优先级队列

|▌冷眼眸甩不掉的悲伤 提交于 2019-12-14 17:35:57

 

优先级队列 - 简书一、定义 优先级队列有很多种实现方式。其中使用 “堆” 来实现 “优先队列” 是最常见的,堆的底层是完全二叉树的形式。 上述是一个小顶堆(最小堆)的示意图 最小堆是一种经过排序的完全...

 

一、定义

优先级队列有很多种实现方式。其中使用 “堆” 来实现 “优先队列” 是最常见的,堆的底层是完全二叉树的形式。

 

1-0 堆的示意图

上述是一个小顶堆(最小堆)的示意图

最小堆是一种经过排序的完全二叉树,其中任一非终端节点的数据值均不大于其左子节点和右子节点的值。

二、API

 

2-0 大顶堆的 API 定义

2.1 上浮和下沉

堆的操作中,最重要的就是堆元素的上浮和下沉操作:

  • 上浮(siftup)
    在堆中插入元素后(完全二叉树的最右下方插入),需要进行上浮操作,重新使得堆有序。

     

    2-1-1 大顶堆上浮元素

private void swim(int k) {
    while (k > 1 && (a[k]>a[k/2])) {
        exch(k, k/2);  
        k = k/2;
    }
}

  • 下沉(siftdown)
    当删除一个堆元素(堆顶)时,首先将堆顶元素与最右下方元素交换,然后删除。此时堆顶元素需要进行下沉操作,重新使得堆有序。

     

    2-1-2 大顶堆下沉元素

private void sink(int k) {
    while (2*k <= n) {
        
        int j = 2*k;
        if (j < n && less(j, j+1)) j++;
        if (!less(k, j)) break;
        swap(k, j);
        k = j;
    }
}

2.2 插入元素

新增元素添加到树的底层最右侧,然后上浮。

 

2-2-1 大顶堆的插入

2.3 删除最大元素

将树的最后一个元素与第一个元素交换,删除最后一个元素,然后从堆顶开始下沉。

 

2-3-1 大顶堆删除最大元素

三、完整实现

3.1 大顶堆

 

3-1-1 大顶堆的操作用例

public class MaxPQ<Key> implements Iterable<Key> {
    private Key[] pq;                    
    private int n;                       
    private Comparator<Key> comparator;  

    
    public MaxPQ(int initCapacity) {
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    
    public MaxPQ() {
        this(1);
    }

    
    public MaxPQ(int initCapacity, Comparator<Key> comparator) {
        this.comparator = comparator;
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    
    public MaxPQ(Comparator<Key> comparator) {
        this(1, comparator);
    }

    
    public MaxPQ(Key[] keys) {
        n = keys.length;
        pq = (Key[]) new Object[keys.length + 1];
        for (int i = 0; i < n; i++)
            pq[i+1] = keys[i];
        for (int k = n/2; k >= 1; k--)
            sink(k);
        assert isMaxHeap();
    }
      
    
    public boolean isEmpty() {
        return n == 0;
    }

    
    public int size() {
        return n;
    }

    
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        return pq[1];
    }

    
    private void resize(int capacity) {
        assert capacity > n;
        Key[] temp = (Key[]) new Object[capacity];
        for (int i = 1; i <= n; i++) {
            temp[i] = pq[i];
        }
        pq = temp;
    }

    
    public void insert(Key x) {

        
        if (n == pq.length - 1) resize(2 * pq.length);

        
        pq[++n] = x;
        swim(n);
        assert isMaxHeap();
    }

    
    public Key delMax() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        Key max = pq[1];
        exch(1, n--);
        sink(1);
        pq[n+1] = null;     
        if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
        assert isMaxHeap();
        return max;
    }

   
    private void swim(int k) {
        while (k > 1 && less(k/2, k)) {
            exch(k, k/2);
            k = k/2;
        }
    }

    private void sink(int k) {
        while (2*k <= n) {
            int j = 2*k;
            if (j < n && less(j, j+1)) j++;
            if (!less(k, j)) break;
            exch(k, j);
            k = j;
        }
    }

   
    private boolean less(int i, int j) {
        if (comparator == null) {
            return ((Comparable<Key>) pq[i]).compareTo(pq[j]) < 0;
        }
        else {
            return comparator.compare(pq[i], pq[j]) < 0;
        }
    }

    private void exch(int i, int j) {
        Key swap = pq[i];
        pq[i] = pq[j];
        pq[j] = swap;
    }

    
    private boolean isMaxHeap() {
        return isMaxHeap(1);
    }

    
    private boolean isMaxHeap(int k) {
        if (k > n) return true;
        int left = 2*k;
        int right = 2*k + 1;
        if (left  <= n && less(k, left))  return false;
        if (right <= n && less(k, right)) return false;
        return isMaxHeap(left) && isMaxHeap(right);
    }

    
    public Iterator<Key> iterator() {
        return new HeapIterator();
    }

    private class HeapIterator implements Iterator<Key> {
        
        private MaxPQ<Key> copy;

        
        
        public HeapIterator() {
            if (comparator == null) copy = new MaxPQ<Key>(size());
            else                    copy = new MaxPQ<Key>(size(), comparator);
            for (int i = 1; i <= n; i++)
                copy.insert(pq[i]);
        }
        public boolean hasNext()  { return !copy.isEmpty();                     }
        public void remove()      { throw new UnsupportedOperationException();  }
        public Key next() {
            if (!hasNext()) throw new NoSuchElementException();
            return copy.delMax();
        }
    }
}

3.2 小顶堆

public class MinPQ<Key> implements Iterable<Key> {
    private Key[] pq;                    
    private int n;                       
    private Comparator<Key> comparator;  

    
    public MinPQ(int initCapacity) {
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    
    public MinPQ() {
        this(1);
    }

    
    public MinPQ(int initCapacity, Comparator<Key> comparator) {
        this.comparator = comparator;
        pq = (Key[]) new Object[initCapacity + 1];
        n = 0;
    }

    
    public MinPQ(Comparator<Key> comparator) {
        this(1, comparator);
    }

    
    public MinPQ(Key[] keys) {
        n = keys.length;
        pq = (Key[]) new Object[keys.length + 1];
        for (int i = 0; i < n; i++)
            pq[i+1] = keys[i];
        for (int k = n/2; k >= 1; k--)
            sink(k);
        assert isMinHeap();
    }

    
    public boolean isEmpty() {
        return n == 0;
    }

    
    public int size() {
        return n;
    }

    
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        return pq[1];
    }

    
    private void resize(int capacity) {
        assert capacity > n;
        Key[] temp = (Key[]) new Object[capacity];
        for (int i = 1; i <= n; i++) {
            temp[i] = pq[i];
        }
        pq = temp;
    }

    
    public void insert(Key x) {
        
        if (n == pq.length - 1) resize(2 * pq.length);

        
        pq[++n] = x;
        swim(n);
        assert isMinHeap();
    }

    
    public Key delMin() {
        if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
        Key min = pq[1];
        exch(1, n--);
        sink(1);
        pq[n+1] = null;     
        if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
        assert isMinHeap();
        return min;
    }

   
    private void swim(int k) {
        while (k > 1 && greater(k/2, k)) {
            exch(k, k/2);
            k = k/2;
        }
    }

    private void sink(int k) {
        while (2*k <= n) {
            int j = 2*k;
            if (j < n && greater(j, j+1)) j++;
            if (!greater(k, j)) break;
            exch(k, j);
            k = j;
        }
    }

   
    private boolean greater(int i, int j) {
        if (comparator == null) {
            return ((Comparable<Key>) pq[i]).compareTo(pq[j]) > 0;
        }
        else {
            return comparator.compare(pq[i], pq[j]) > 0;
        }
    }

    private void exch(int i, int j) {
        Key swap = pq[i];
        pq[i] = pq[j];
        pq[j] = swap;
    }

    
    private boolean isMinHeap() {
        return isMinHeap(1);
    }

    
    private boolean isMinHeap(int k) {
        if (k > n) return true;
        int left = 2*k;
        int right = 2*k + 1;
        if (left  <= n && greater(k, left))  return false;
        if (right <= n && greater(k, right)) return false;
        return isMinHeap(left) && isMinHeap(right);
    }

    
    public Iterator<Key> iterator() {
        return new HeapIterator();
    }

    private class HeapIterator implements Iterator<Key> {
        
        private MinPQ<Key> copy;

        
        
        public HeapIterator() {
            if (comparator == null) copy = new MinPQ<Key>(size());
            else                    copy = new MinPQ<Key>(size(), comparator);
            for (int i = 1; i <= n; i++)
                copy.insert(pq[i]);
        }
        
        public boolean hasNext()  { return !copy.isEmpty();                     }
        public void remove()      { throw new UnsupportedOperationException();  }
        public Key next() {
            if (!hasNext()) throw new NoSuchElementException();
            return copy.delMin();
        }
    }
}

四、性能分析

  • 时间复杂度
    插入操作:O(lgN)
    删除操作:O(lgN)
    建堆:O(NlgN)
  • 空间复杂度
    O(N)

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!