1219. Path with Maximum Gold
In a gold mine grid
of size m * n
, each cell in this mine has an integer representing the amount of gold in that cell, 0
if it is empty.
Return the maximum amount of gold you can collect under the conditions:
- Every time you are located in a cell you will collect all the gold in that cell.
- From your position you can walk one step to the left, right, up or down.
- You can’t visit the same cell more than once.
- Never visit a cell with
0
gold. - You can start and stop collecting gold from any position in the grid that has some gold.
Example 1:
Input: grid = [[0,6,0],[5,8,7],[0,9,0]]
Output: 24
Explanation:
[[0,6,0],
[5,8,7],
[0,9,0]]
Path to get the maximum gold, 9 -> 8 -> 7.
Example 2:
Input: grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
Output: 28
Explanation:
[[1,0,7],
[2,0,6],
[3,4,5],
[0,3,0],
[9,0,20]]
Path to get the maximum gold, 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7.
Constraints:
1 <= grid.length, grid[i].length <= 15
0 <= grid[i][j] <= 100
- There are at most 25 cells containing gold.
题目:你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n
的网格 grid
进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0
。为了使收益最大化,矿工需要按以下规则来开采黄金:
- 每当矿工进入一个单元,就会收集该单元格中的所有黄金。
- 矿工每次可以从当前位置向上下左右四个方向走。
- 每个单元格只能被开采(进入)一次。
- 不得开采(进入)黄金数目为
0
的单元格。 - 矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。
思路:DFS.
class Solution {
public:
int getMaximumGold(vector<vector<int>>& grid) {
int r = grid.size();
int c = grid[0].size();
int res = 0;
for(int i = 0; i < r; ++i)
for(int j = 0; j < c; ++j)
if(grid[i][j])
res = max(res, dfs(grid, i, j));
return res;
}
private:
int dr[4] = {-1, 0, 1, 0};
int dc[4] = {0, 1, 0, -1};
private:
int dfs(vector<vector<int>>& grid, int i, int j){
int r = grid.size();
int c = grid[0].size();
if(i < 0 || i >= r || j < 0 || j >= c || grid[i][j] <= 0)
return 0;
grid[i][j] = - grid[i][j]; // 标记已经走过了
int res = 0;
// 求解四个方向的最大值路径
for(int k = 0; k < 4; ++k){
int x = i + dr[k];
int y = j + dc[k];
res = max(res, dfs(grid, x, y));
}
grid[i][j] = -grid[i][j];
return res + grid[i][j];
}
};
来源:CSDN
作者:grllery
链接:https://blog.csdn.net/grllery/article/details/103458647