Why do IPOPT and Scipy bring different results using the same inputs, constraints and objective function?

微笑、不失礼 提交于 2019-12-13 03:13:53

问题


I’m pretty new to optimization field, so forgive me if my question is too simple. I ran an optimization using Scipy (method SLSQP) and another one using Pyomo (IPOPT solver).

Pyomo runs in less than one minute and Scipy takes 4 hours. Both have the same inputs, constraints and objective function. However, I got different results and my final results are 3% lower in Pyomo.

There is no constraint violation, so I wonder if there is anything that happens under the hood to justify this difference?

I put the log of solvers below.

Many thanks!

Pyomo (IPOPT):

Number of nonzeros in equality constraint Jacobian...:        0
Number of nonzeros in inequality constraint Jacobian.:     2328
Number of nonzeros in Lagrangian Hessian.............:     5796

Total number of variables............................:     1656
                     variables with only lower bounds:        0
                variables with lower and upper bounds:     1656
                     variables with only upper bounds:        0
Total number of equality constraints.................:        0
Total number of inequality constraints...............:     1164
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:     1164

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr ls
 0 1.2175516e-001 2.00e-003 1.10e+000  -1.0 0.00e+000    -  0.00e+000 0.00e+000   0
 1 1.7159127e-001 4.64e-004 2.68e+001  -1.0 9.89e-002    -  1.00e+000 2.99e-002f  1
 2 1.4757673e-001 1.02e-006 4.63e-001  -1.0 1.18e-002    -  1.00e+000 9.90e-001h  1
 3 1.4578777e-001 0.00e+000 1.91e+001  -1.7 1.13e-003    -  7.16e-001 1.00e+000f  1
 4 1.4522458e-001 0.00e+000 3.57e-004  -1.7 4.35e-004    -  1.00e+000 1.00e+000f  1
 5 1.4516754e-001 0.00e+000 5.01e-008  -3.8 5.97e-006    -  1.00e+000 1.00e+000f  1
 6 1.3779755e-001 0.00e+000 2.13e-001  -5.7 1.10e-003    -  5.33e-001 1.00e+000f  1
 7 1.2833665e-001 0.00e+000 8.20e-002  -5.7 1.50e-003    -  6.14e-001 1.00e+000f  1
 8 1.2186589e-001 0.00e+000 3.96e-002  -5.7 1.58e-003    -  5.14e-001 8.75e-001f  1
 9 1.1779793e-001 0.00e+000 1.98e-002  -5.7 1.26e-003    -  5.80e-001 9.20e-001f  1
 iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
 10 1.1546554e-001 0.00e+000 8.06e-003  -5.7 1.29e-003    -  7.18e-001 1.00e+000f  1
 11 1.1457517e-001 0.00e+000 6.17e-005  -5.7 7.62e-004    -  1.00e+000 1.00e+000f  1
 12 1.1440512e-001 0.00e+000 5.72e-006  -5.7 2.98e-004    -  1.00e+000 1.00e+000f  1
 13 1.1285677e-001 0.00e+000 3.15e-003  -8.6 1.37e-003    -  6.05e-001 7.84e-001f  1
 14 1.1237444e-001 0.00e+000 1.24e-003  -8.6 1.35e-003    -  6.37e-001 6.43e-001f  1
 15 1.1214949e-001 0.00e+000 1.70e-003  -8.6 1.54e-003    -  4.40e-001 6.26e-001f  1
 16 1.1203489e-001 0.00e+000 1.40e-003  -8.6 2.82e-003    -  4.49e-001 7.18e-001f  1
 17 1.1200180e-001 0.00e+000 4.97e-004  -8.6 1.21e-003    -  6.60e-001 5.89e-001f  1
 18 1.1197130e-001 0.00e+000 2.65e-004  -8.6 1.62e-003    -  6.69e-001 9.46e-001f  1
 19 1.1196671e-001 0.00e+000 1.70e-004  -8.6 8.83e-004    -  1.00e+000 8.58e-001f  1
 iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
 20 1.1196558e-001 0.00e+000 8.21e-007  -8.6 7.88e-004    -  1.00e+000 1.00e+000f  1
 21 1.1196558e-001 0.00e+000 4.69e-009  -8.6 3.18e-005    -  1.00e+000 1.00e+000h  1

Number of Iterations....: 21

                               (scaled)                 (unscaled)
Objective...............:  1.1196557946295761e-001   1.1196557946295761e-001
Dual infeasibility......:  4.6902322746109060e-009   4.6902322746109060e-009
Constraint violation....:  0.0000000000000000e+000   0.0000000000000000e+000
Complementarity.........:  2.5450573136704817e-009   2.5450573136704817e-009
Overall NLP error.......:  4.6902322746109060e-009   4.6902322746109060e-009


Number of objective function evaluations             = 22
Number of objective gradient evaluations             = 22
Number of equality constraint evaluations            = 0
Number of inequality constraint evaluations          = 22
Number of equality constraint Jacobian evaluations   = 0
Number of inequality constraint Jacobian evaluations = 22
Number of Lagrangian Hessian evaluations             = 21
Total CPU secs in IPOPT (w/o function evaluations)   =      3.105
Total CPU secs in NLP function evaluations           =     64.320

EXIT: Optimal Solution Found.

Scipy (SLSQP):

Optimization terminated successfully.    (Exit mode 0)
            Current function value: -0.218957755761
            Iterations: 16
            Function evaluations: 8875
            Gradient evaluations: 16
 fun: -0.21895775576074572
 jac: array([ -2.86530703e-05,   2.38219555e-02,  -1.52000505e-02,
    -8.21491890e-03,   3.59528698e-03,  -7.48533383e-03,
    -1.92692690e-03,  -3.41123156e-03,  -3.21419816e-02,
    -9.97265056e-03,  -6.48400187e-03,  -5.71907870e-02,
    -4.65486385e-03,   1.15180114e-01,  -1.14405552e-01,
    -9.20804739e-02,  -5.98104000e-02,  -1.90570783e-01,
    -2.40653940e-03,   8.92927870e-03,  -3.03730890e-02,
    -3.75409909e-02,  -1.84157491e-02,  -6.97886087e-02,
    -7.83495419e-03,   7.51326103e-02,  -1.36542384e-01,
    -1.64468037e-01,  -5.80270607e-02,  -2.43128262e-01,
     9.03517008e-04,   1.44044254e-01,  -4.12496198e-02,
     1.62238544e-01,   5.17717227e-02,   6.62118383e-03,
    -6.94024377e-03,  -1.62795186e-06,  -7.60566294e-02,
     2.84731667e-02,   9.48129594e-03,   1.77269895e-02,
    -1.79448333e-02,   4.12751781e-01,  -5.09224996e-01,
    -4.75407017e-01,  -1.37610277e-01,  -3.66811626e-01,
    -1.09504517e-02,   8.36522859e-02,  -8.82836487e-02,
    -1.12652794e-01,  -9.48307663e-03,  -1.70594741e-01,
    -4.89408337e-03,   1.44064132e-01,  -2.83695426e-01,
    -6.33431289e-01,  -1.10606764e-01,  -1.23438478e+00,
     6.29534945e-04,   2.11109556e-02,  -8.12242366e-03,
    -5.52550517e-03,  -1.05711445e-03,  -4.10291739e-03,
    -1.12794340e-04,   8.43631104e-04,  -4.40889411e-03,
    -3.51147540e-03,  -3.96092795e-03,  -1.60357766e-02,
    -2.87283026e-03,   9.95702017e-02,  -8.42474047e-02,
    -5.85573092e-02,  -1.97137874e-02,  -1.17533877e-01,
    -4.55826521e-04,   8.99187662e-03,  -9.73374955e-03,
    -1.53909251e-02,  -1.01474449e-02,  -3.47449742e-02,
    -7.40325637e-03,   5.10204509e-02,  -1.03980640e-01,
    -1.28275935e-01,  -3.68812345e-02,  -1.87080827e-01,
     3.97755578e-03,   1.27710635e-01,   1.24892965e-03,
     6.84398040e-03,  -4.52733599e-03,   3.05649638e-03,
    -1.26620755e-03,   4.24076803e-03,  -1.80831421e-02,
     2.43064966e-02,   9.49857384e-03,  -1.87398158e-02,
    -1.77961476e-02,   2.05051536e-01,  -3.54529817e-01,
    -1.13319729e-01,  -8.52574222e-02,  -2.59923333e-01,
    -4.84287739e-08,   5.70387375e-02,  -1.34056807e-02,
    -2.43987478e-02,  -9.49930027e-03,  -4.61928491e-02,
    -6.80417009e-03,   1.12068275e-01,  -1.86054656e-01,
    -3.74100447e-01,  -4.32863012e-02,  -6.24756081e-01,
     4.32096422e-05,   5.92724048e-03,  -8.94419849e-04,
    -1.60194561e-03,  -1.33785978e-03,  -7.82429613e-03,
     1.15226954e-04,   4.10270691e-03,   9.56920907e-04,
    -9.39304009e-04,  -1.52550451e-03,  -1.23954304e-02,
    -2.23761424e-04,   4.16153856e-03,  -5.92420809e-03,
    -4.37961146e-03,  -8.66637938e-03,  -9.28674955e-02,
    -1.03672035e-03,   8.45305808e-03,  -9.75430571e-03,
    -1.07939821e-02,  -1.42787714e-02,  -7.95205198e-02,
    -5.15344553e-03,  -1.00889970e-02,  -1.49491001e-02,
    -1.03760045e-02,  -1.52482167e-02,  -4.55282964e-02,
    -3.72127816e-03,  -6.14217855e-03,  -1.30692031e-02,
    -2.25217454e-03,  -5.74426726e-03,  -2.93964595e-02,
     6.40904531e-04,   3.90792079e-02,   1.43495500e-02,
    -2.58227624e-03,  -3.28428857e-03,  -2.17399020e-02,
     7.04728067e-04,   1.24288686e-02,   4.11624648e-03,
    -1.81579404e-03,  -4.29862924e-03,  -2.11058315e-02,
    -7.32630491e-04,   1.12954117e-02,  -1.88982859e-02,
    -2.35779863e-02,  -3.08214929e-02,  -2.37093600e-01,
    -4.50097211e-03,   1.66281778e-02,  -6.18589669e-03,
    -2.63096057e-02,  -5.14719374e-02,  -1.85552407e-01,
    -1.11916158e-02,  -2.29235720e-02,  -5.41237053e-02,
    -1.93158500e-02,  -1.13643501e-02,  -3.10595483e-02,
    -1.07513871e-02,  -1.90889183e-02,  -3.54674589e-02,
    -1.76651645e-02,  -2.94905212e-02,  -7.99291506e-02,
     0.00000000e+00,   9.88531858e-03,   1.05758756e-03,
    -2.41546892e-03,  -1.73184648e-03,  -8.43126141e-03,
     2.30846927e-04,   5.94364479e-03,   1.13965571e-03,
    -8.49841163e-04,  -1.96019933e-03,  -6.37469999e-03,
    -9.47732478e-05,   4.79303859e-03,  -2.08349712e-03,
    -3.83082405e-03,  -3.19225155e-03,  -3.60421091e-02,
    -5.54338098e-04,   5.27323410e-03,  -4.00500000e-03,
    -4.98357229e-03,  -9.01233219e-03,  -4.78239655e-02,
    -2.61466764e-03,  -1.01818740e-02,  -9.53836553e-03,
     3.85768712e-03,  -4.17769700e-03,  -8.56735930e-03,
    -3.28000821e-03,  -4.06493433e-03,  -4.02838178e-03,
     9.29726288e-04,  -5.92118129e-03,  -7.46217184e-03,
     7.45382160e-04,   1.99196283e-02,   7.32803158e-03,
    -2.56313197e-03,  -1.77604519e-03,  -8.92506912e-03,
     2.32316554e-04,   1.44336931e-02,   5.32799214e-03,
    -1.52365863e-03,  -3.25956382e-03,  -1.21336430e-02,
    -2.78177857e-03,   8.04873183e-03,  -3.14733274e-02,
    -3.45978905e-02,  -4.22597863e-02,  -1.58204751e-01,
    -3.20594013e-03,   1.20428633e-02,  -1.32644773e-02,
    -1.90007072e-02,  -3.05818226e-02,  -1.06163416e-01,
    -4.95312177e-03,  -2.27362346e-02,  -2.74502411e-02,
    -1.91133153e-02,  -1.42665114e-02,  -5.53950872e-02,
    -1.28527358e-02,  -1.83296073e-02,  -1.71343014e-02,
    -8.90292972e-03,  -2.31084358e-02,  -6.46356232e-02,
     3.73758376e-05,   9.93125141e-04,   4.11760062e-04,
    -2.15793028e-04,  -2.44235620e-04,  -1.41125172e-03,
     9.87295061e-05,   1.04581565e-03,   2.64123082e-04,
    -1.77111477e-04,  -3.58037651e-04,  -1.76383182e-03,
    -2.64507905e-03,   1.42250024e-03,  -4.89842519e-03,
    -9.01906751e-03,  -9.05502029e-03,  -3.83878704e-02,
    -1.05027296e-03,   5.29479980e-03,  -4.14970145e-03,
    -4.26785462e-03,  -6.99245743e-03,  -2.56510004e-02,
    -2.48845667e-03,  -2.41506658e-03,  -1.20230783e-02,
    -4.56554629e-03,  -1.13946758e-02,  -5.04478421e-02,
    -4.73168865e-03,  -6.09773025e-03,  -1.12827662e-02,
     1.85097754e-03,  -5.41935302e-03,  -1.82703547e-02,
     6.51884824e-04,   1.60064809e-02,   8.85203481e-04,
    -1.98119693e-03,  -1.10076927e-03,  -4.82245721e-03,
     3.59894708e-04,   6.94737397e-03,   1.89301558e-03,
    -6.03890046e-04,  -1.72022544e-03,  -5.99285960e-03,
    -1.18161738e-03,   7.13099912e-03,  -8.30562785e-03,
    -1.86010320e-02,  -2.09499765e-02,  -1.07730741e-01,
    -1.35865994e-03,   1.07049122e-02,  -5.89556433e-03,
    -6.04888797e-03,  -1.54975597e-02,  -4.50542532e-02,
    -6.56010769e-03,  -1.71564929e-02,  -3.16504389e-02,
     7.77484290e-03,  -2.54669767e-02,  -4.29303497e-02,
    -1.27771329e-02,  -1.22673512e-02,  -1.34785436e-02,
    -3.55788693e-03,  -1.59052592e-02,  -4.60611172e-02,
     2.73883343e-05,   1.28661655e-03,   1.32496655e-03,
    -7.52860680e-04,  -3.18214297e-04,  -2.64157727e-03,
     1.04481354e-04,   1.06248818e-03,  -6.68087974e-04,
    -4.96750697e-04,  -7.30423257e-04,  -7.89061375e-03,
    -6.99050725e-05,   2.25268491e-03,  -2.59658322e-04,
    -2.08515488e-03,  -3.44311260e-03,  -4.08612806e-02,
    -3.41659412e-04,   8.25025514e-03,  -4.19360027e-03,
    -4.02395613e-03,  -8.04402493e-03,  -3.61145660e-02,
    -4.10106033e-03,  -3.54836322e-03,  -1.21456627e-02,
    -8.09197687e-03,  -9.88831185e-03,  -4.19944301e-02,
    -3.35960463e-03,  -5.55329956e-03,   3.87430191e-07,
    -3.00006196e-03,  -1.08503066e-02,  -2.48223785e-02,
     4.98574227e-04,   7.95373507e-03,   3.16526555e-03,
    -1.25443563e-03,  -1.09320320e-03,  -6.55071996e-03,
     4.44874167e-04,   7.76365399e-03,   9.42828134e-04,
    -7.99467787e-04,  -2.13225558e-03,  -1.05341990e-02,
    -6.21005893e-05,   6.95007853e-03,  -3.90985049e-03,
    -5.49996458e-03,  -7.63768889e-03,  -5.58281839e-02,
    -2.26614997e-04,   1.76616255e-02,  -4.19690460e-03,
    -5.20926714e-03,  -1.44895259e-02,  -4.61813156e-02,
    -4.19271179e-03,  -9.09698568e-03,  -1.06259286e-02,
    -3.54743563e-03,  -5.10646775e-03,  -1.10679623e-02,
    -5.74621186e-03,  -7.78321736e-03,  -1.95963234e-02,
     2.40541995e-03,  -1.28107201e-02,  -3.22154127e-02,
     0.00000000e+00,   1.15281790e-02,  -5.89642674e-04,
    -2.56875530e-03,  -1.60184316e-03,  -9.01488960e-03,
     1.49490312e-04,   3.96637246e-03,   7.23605976e-04,
    -3.39373946e-04,  -7.29555264e-04,  -3.41222622e-03,
     4.91933897e-04,   4.79298644e-03,  -1.36148743e-03,
    -3.09252739e-03,  -1.30598992e-03,  -3.25014275e-02,
    -1.48264691e-04,   5.81834279e-03,   4.93273139e-04,
    -3.36393714e-03,  -6.53593056e-03,  -3.08387689e-02,
    -2.83966586e-03,   1.41968429e-02,  -1.80919841e-03,
    -1.42674148e-03,  -5.79566322e-03,  -2.15087645e-02,
    -1.31441467e-03,   6.16572797e-05,  -8.16728547e-03,
     6.94575347e-03,  -6.67758286e-06,   6.49690628e-06,
     6.40964136e-04,   1.71578471e-02,  -2.34624371e-04,
    -8.65986571e-04,  -9.42235813e-04,  -6.54706173e-03,
     5.97715378e-04,   8.92345421e-03,   3.90317291e-05,
     4.61790711e-04,  -1.38256326e-03,  -5.06369583e-03,
    -1.08058378e-03,   1.90478899e-02,  -1.26504526e-02,
    -1.80059075e-02,  -2.02428084e-02,  -8.32739137e-02,
    -4.57635149e-04,   1.48563143e-02,  -4.61235270e-03,
    -4.35184315e-03,  -1.43206567e-02,  -5.11662122e-02,
    -2.01708637e-03,  -8.17853212e-03,  -1.13892797e-02,
    -7.81113654e-03,  -5.06492332e-03,  -1.62509475e-02,
    -4.45904024e-03,  -3.49108502e-03,   1.26063824e-05,
    -4.43559140e-04,  -6.13087229e-03,  -9.33923945e-03,
     9.77199525e-05,  -1.20302662e-04,   6.49858266e-05,
    -6.16315752e-04,  -1.09991059e-04,  -8.05266201e-04,
     1.33268535e-04,   1.58888288e-03,   4.01115045e-04,
    -4.16098163e-04,  -6.09697774e-04,  -2.22290866e-03,
    -6.64424151e-05,   2.38372199e-03,  -3.04354168e-03,
    -5.99475019e-03,  -5.06760180e-03,  -2.39575263e-02,
    -3.29341739e-04,   1.10920742e-02,  -3.33048403e-03,
    -4.38063592e-03,  -1.45150907e-03,  -2.05246266e-02,
    -3.02891247e-03,  -2.38477811e-03,  -1.07535366e-02,
    -3.84285301e-03,  -1.89998019e-02,  -5.75217623e-02,
    -6.42297603e-03,  -7.19357841e-03,   1.13621354e-06,
     1.26846135e-06,  -4.82495315e-03,  -2.00816058e-02,
     5.89428470e-04,   1.43375155e-02,  -6.91805035e-05,
    -7.68952072e-04,  -7.63844699e-04,  -4.05739807e-03,
     3.40092927e-04,   6.51947781e-03,   1.81198679e-03,
    -7.32991844e-04,  -1.34203769e-03,  -3.88008356e-03,
    -4.05080616e-04,   9.03119706e-03,  -1.21198408e-03,
    -9.45428014e-03,  -1.04830898e-02,  -6.03188500e-02,
     1.47185102e-03,   2.29265150e-02,  -6.64852560e-05,
     2.63871066e-03,  -2.76003219e-03,  -1.08072124e-02,
    -7.17901625e-03,  -1.83483101e-02,  -3.11868638e-03,
    -1.54440161e-02,  -2.84395684e-02,  -4.30134293e-02,
    -1.42674167e-02,  -9.29352455e-03,  -1.13600492e-02,
    -5.69218211e-03,  -1.53469685e-02,  -2.21603531e-02,
     0.00000000e+00])
 message: 'Optimization terminated successfully.'
  nfev: 8875
  nit: 16
  njev: 16
  status: 0
 success: True

来源:https://stackoverflow.com/questions/46609929/why-do-ipopt-and-scipy-bring-different-results-using-the-same-inputs-constraint

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!