问题
I'm trying to do a linear approximation for each id
in the data frame between year
using point x
. dplyr
seems like an appropriate option for this, but I can't get it to work because of an error:
Error: incompatible size (9), expecting 3 (the group size) or 1
Sample code:
library(dplyr)
dat <- data.frame(id = c(1,1,1,2,2,2,3,3,3), year = c(1,2,3,1,2,3,1,2,3), x = c(1,NA,2, 3, NA, 4, 5, NA, 6))
# Linear Interpolation
dat %>%
group_by(id) %>%
mutate(x2 = as.numeric(unlist(approx(x = dat$year, y = dat$x, xout = dat$x)[2])))
Sample Data:
id year x
1 1 1 1
2 1 2 NA
3 1 3 2
4 2 1 3
5 2 2 NA
6 2 3 4
7 3 1 5
8 3 2 NA
9 3 3 6
回答1:
Here are a couple of approaches (transferred from comments):
1) na.approx/ave
library(zoo)
transform(dat, x2 = ave(x, id, FUN = na.approx))
With year being 1, 2, 3 we did not not need to specify it but if this were needed then:
nr <- nrow(dat)
transform(dat, x2 = ave(1:nr, id, FUN = function(i) with(dat[i, ], na.approx(x, year))))
2) na.approx/dplyr
library(dplyr)
library(zoo)
dat %>%
group_by(id) %>%
mutate(x2 = na.approx(x, year)) %>%
ungroup()
If year is not needed then omit the second argument to na.approx
.
Note: zoo also has other NA filling functions, particularly na.spline
and na.locf
.
回答2:
You can do this in base R:
dat <- dat[order(dat$id, dat$year),]
dat$x2 <- unlist(by(dat, dat$id, function(df) approx(df$year, df$x, xout = df$year)[2]))
dat
id year x x2
1 1 1 1 1.0
2 1 2 NA 1.5
3 1 3 2 2.0
4 2 1 3 3.0
5 2 2 NA 3.5
6 2 3 4 4.0
7 3 1 5 5.0
8 3 2 NA 5.5
9 3 3 6 6.0
来源:https://stackoverflow.com/questions/36926984/using-approx-in-dplyr