问题
In Funq and probably most other IoC containers I can simply do this to configure a type:
container.Register<ISomeThing>(c => new SomeThing());
How could I quickly extend MEF (or use existing MEF functionality) to do the same without using attributes.
Here is how I thought I could do it:
var container = new CompositionContainer();
var batch = new CompositionBatch();
batch.AddExport<ISomeThing>(() => new SomeThing());
batch.AddExportedValue(batch);
container.Compose(batch);
With this extension method for CompositionBatch
:
public static ComposablePart AddExport<TKey>(this CompositionBatch batch, Func<object> func)
{
var typeString = typeof(TKey).ToString();
return batch.AddExport(
new Export(
new ExportDefinition(
typeString,
new Dictionary<string, object>() { { "ExportTypeIdentity", typeString } }),
func));
}
If I later do:
var a = container.GetExport<ISomeThing>().Value;
var b = container.GetExport<ISomeThing>().Value;
Both instance are the same. How can I force (configure) them to be different instances?
If this is not the way to go, how would I do this in MEF?
回答1:
I would imagine the key is to add the delegate to the container, e.g.:
container.AddExportedValue<Func<ISomething>>(() => new Something());
That way you can grab the delegate and execute it:
var factory = container.GetExport<Func<ISomething>>();
ISomething something = factory();
Of course, MEF (Silverlight) does provide a native ExportFactory<T>
(and ExportFactory<T,TMetadata>
type that supports the creation of new instances for each call to import. You can add support for this by downloading Glen Block's ExportFactory for .NET 4.0 (Desktop) library.
回答2:
If you don't want to use attributes, you can use this trick (based on Mark Seemann's blogpost).
First, create a generic class like this:
[PartCreationPolicy(CreationPolicy.NonShared)]
public class MefAdapter<T> where T : new()
{
private readonly T export;
public MefAdapter()
{
this.export = new T();
}
[Export]
public virtual T Export
{
get { return this.export; }
}
}
Now you can register any class you want in the container, like this:
var registeredTypesCatalog = new TypeCatalog(
typeof(MefAdapter<Foo>),
typeof(MefAdapter<Bar>),
...);
var container = new CompositionContainer(catalog);
Alternatively, you could implement your own export provider derived from ExportProvider, which allows you to pretty much duplicate Funq's way of working:
var provider = new FunqyExportProvider();
provider.Register<IFoo>(context => new Foo());
var container = new CompositionContainer(provider);
回答3:
Both instance are the same. How can I force (configure) them to be different instances?
Simply mark the SomeThing
class like this:
[Export(typeof(ISomeThing)]
[PartCreationPolicy(CreationPolicy.NonShared]
public class SomeThing : ISomeThing
{
...
}
And then you will get different instances wherever you import ISomeThing
.
Alternatively, you can also set a required creation policy on an import:
[Export(typeof(IFoo))]
public class Foo : IFoo
{
[Import(typeof(ISomeThing),
RequiredCreationPolicy = CreationPolicy.NonShared)]
public ISomething SomeThing { private get; set; }
}
回答4:
In Glen Block's Skydrive directory linked to in Matthew Abbott's answer I found something that seems simple and lightweight: A FuncCatalog
. Download it here: FuncCatalogExtension.
Using the few little classes from that project I could now do this:
var funcCatalog = new FuncCatalog();
funcCatalog.AddPart<ISomeThing>(ep => new SomeThing());
var container = new CompositionContainer(funcCatalog);
var batch = new CompositionBatch();
batch.AddExportedObject<ExportProvider>(container);
container.Compose(batch);
var a = container.GetExportedObject<ISomeThing>();
var b = container.GetExportedObject<ISomeThing>();
来源:https://stackoverflow.com/questions/7361081/composing-mef-parts-in-c-sharp-like-a-simple-funq-container