问题
This is the problem I have: I'm using Python 2.7, and I have a code which runs in a thread, which has a critical region that only one thread should execute at the time. That code currently has no mutex mechanisms, so I wanted to inquire what I could use for my specific use case, which involves "dropping" of "queued" functions. I've tried to simulate that behavior with the following minimal working example:
useThreading=False # True
if useThreading: from threading import Thread, Lock
else: from multiprocessing import Process, Lock
mymutex = Lock()
import time
tstart = None
def processData(data):
#~ mymutex.acquire()
try:
print('thread {0} [{1:.5f}] Do some stuff'.format(data, time.time()-tstart))
time.sleep(0.5)
print('thread {0} [{1:.5f}] 1000'.format(data, time.time()-tstart))
time.sleep(0.5)
print('thread {0} [{1:.5f}] done'.format(data, time.time()-tstart))
finally:
#~ mymutex.release()
pass
# main:
tstart = time.time()
for ix in xrange(0,3):
if useThreading: t = Thread(target = processData, args = (ix,))
else: t = Process(target = processData, args = (ix,))
t.start()
time.sleep(0.001)
Now, if you run this code, you get a printout like this:
thread 0 [0.00173] Do some stuff
thread 1 [0.00403] Do some stuff
thread 2 [0.00642] Do some stuff
thread 0 [0.50261] 1000
thread 1 [0.50487] 1000
thread 2 [0.50728] 1000
thread 0 [1.00330] done
thread 1 [1.00556] done
thread 2 [1.00793] done
That is to say, the three threads quickly get "queued" one after another (something like 2-3 ms after each other). Actually, they don't get queued, they simply start executing in parallel after 2-3 ms after each other.
Now, if I enable the mymutex.acquire()
/.release()
commands, I get what would be expected:
thread 0 [0.00174] Do some stuff
thread 0 [0.50263] 1000
thread 0 [1.00327] done
thread 1 [1.00350] Do some stuff
thread 1 [1.50462] 1000
thread 1 [2.00531] done
thread 2 [2.00547] Do some stuff
thread 2 [2.50638] 1000
thread 2 [3.00706] done
Basically, now with locking, the threads don't run in parallel, but they run one after another thanks to the lock - as long as one thread is working, the others will block at the .acquire()
. But this is not exactly what I want to achieve, either.
What I want to achieve is this: let's assume that when .acquire()
is first triggered by a thread function, it registers an id of a function (say a pointer to it) in a queue. After that, the behavior is basically the same as with the Lock - while the one thread works, the others block at .acquire()
. When the first thread is done, it goes in the finally:
block - and here, I'd like to check to see how many threads are waiting in the queue; then I'd like to delete/drop all waiting threads except for the very last one - and finally, I'd .release()
the lock; meaning that after this, what was the last thread in the queue would execute next. I'd imagine, I would want to write something like the following pseudocode:
...
finally:
if (len(mymutex.queue) > 2): # more than this instance plus one other waiting:
while (len(mymutex.queue) > 2):
mymutex.queue.pop(1) # leave alone [0]=this instance, remove next element
# at this point, there should be only queue[0]=this instance, and queue[1]= what was the last thread queued previously
mymutex.release() # once we releace, queue[0] should be gone, and the next in the queue should acquire the mutex/lock..
pass
...
With that, I'd expect a printout like this:
thread 0 [0.00174] Do some stuff
thread 0 [0.50263] 1000
thread 0 [1.00327] done
# here upon lock release, thread 1 would be deleted - and the last one in the queue, thread 2, would acquire the lock next:
thread 2 [1.00350] Do some stuff
thread 2 [1.50462] 1000
thread 2 [2.00531] done
What would be the most straightforward way to achieve this in Python?
回答1:
Seems like you want a queue-like behaviour, so why not use Queue?
import threading
from Queue import Queue
import time
# threads advertise to this queue when they're waiting
wait_queue = Queue()
# threads get their task from this queue
task_queue = Queue()
def do_stuff():
print "%s doing stuff" % str(threading.current_thread())
time.sleep(5)
def queue_thread(sleep_time):
# advertise current thread waiting
time.sleep(sleep_time)
wait_queue.put("waiting")
# wait for permission to pass
message = task_queue.get()
print "%s got task: %s" % (threading.current_thread(), message)
# unregister current thread waiting
wait_queue.get()
if message == "proceed":
do_stuff()
# kill size-1 threads waiting
for _ in range(wait_queue.qsize() - 1):
task_queue.put("die")
# release last
task_queue.put("proceed")
if message == "die":
print "%s died without doing stuff" % threading.current_thread()
pass
t1 = threading.Thread(target=queue_thread, args=(1, ))
t2 = threading.Thread(target=queue_thread, args=(2, ))
t3 = threading.Thread(target=queue_thread, args=(3, ))
t4 = threading.Thread(target=queue_thread, args=(4, ))
# allow first thread to pass
task_queue.put("proceed")
t1.start()
t2.start()
t3.start()
t4.start()
thread-1 arrives first and "acquires" the section, other threads come later to wait at the queue (and advertise they're waiting). Then, when thread-1 leaves it gives permission to the last thread at the queue by telling all other thread to die, and the last thread to proceed.
You can have finer control using different messages, a typical one would be a thread-id in the wait_queue
(so you know who is waiting, and the order in which it arrived).
You can probably utilize non-blocking operations (queue.put(block=False) and queue.get(block=False)) in your favour when you're set on what you need.
来源:https://stackoverflow.com/questions/28084833/mutual-exclusion-thread-locking-with-dropping-of-queued-functions-upon-mutex-lo