How to get the selected features in GridSearchCV in sklearn in python

只谈情不闲聊 提交于 2019-12-10 17:03:49

问题


I am using recurive feature elimination with cross validation (rfecv) as the feature selection technique with GridSearchCV.

My code is as follows.

X = df[my_features_all]
y = df['gold_standard']

x_train, x_test, y_train, y_test = train_test_split(X, y, random_state=0)

k_fold = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)

clf = RandomForestClassifier(random_state = 42, class_weight="balanced")

rfecv = RFECV(estimator=clf, step=1, cv=k_fold, scoring='roc_auc')

param_grid = {'estimator__n_estimators': [200, 500],
    'estimator__max_features': ['auto', 'sqrt', 'log2'],
    'estimator__max_depth' : [3,4,5]
    }

CV_rfc = GridSearchCV(estimator=rfecv, param_grid=param_grid, cv= k_fold, scoring = 'roc_auc', verbose=10, n_jobs = 5)
CV_rfc.fit(x_train, y_train)
print("Finished feature selection and parameter tuning")

Now, I want to get the optimal number of features and selected features from the above code.

For that I ran the below code.

#feature selection results
print("Optimal number of features : %d" % rfecv.n_features_)
features=list(X.columns[rfecv.support_])
print(features)

However, I got the following error: AttributeError: 'RFECV' object has no attribute 'n_features_'.

Is there any other way of getting these details?

I am happy to provide more details if needed.


回答1:


The object rfecv that you passed to GridSearchCV is not fitted by it. It is first cloned and those clones are then fitted to data and evaluated for all the different combinations of hyperparameters.

So to access the best features, you would need to access the best_estimator_ attribute of the GridSearchCV:-

CV_rfc.fit(x_train, y_train)
print("Finished feature selection and parameter tuning")

print("Optimal number of features : %d" % rfecv.n_features_)
features=list(X.columns[CV_rfc.best_estimator_.support_])
print(features)


来源:https://stackoverflow.com/questions/55650782/how-to-get-the-selected-features-in-gridsearchcv-in-sklearn-in-python

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!