随机波浪Jonswap谱

房东的猫 提交于 2019-12-10 05:07:55

随机海浪往往具有统计特征,组成频率会呈现出某一频率集中的特征。由此而衍生出的海浪谱多种多样。其中较为著名的一种海浪谱Jonswap被广泛应用在海洋科学、海洋工程领域。
以合田改进的Jonswap谱(1999)为例:
S(f)=βjH1/32TP4f5exp[54(TPf)4]γexp[(ffP1)2/2σ2]S(f)=\beta_jH_{1/3}^2T_P^{-4}f^{-5}\exp[-\frac{5}{4}(T_Pf)^{-4}]\gamma^{\exp[-(\frac{f}{f_P}-1)^2/2\sigma^2]}
其中,
βj=0.062380.230+0.0336γ0.185(1.9+γ)1[1.0940.01915lnγ]\beta_j=\frac{0.06238}{0.230+0.0336\gamma-0.185(1.9+\gamma)^{-1}}[1.094-0.01915\ln\gamma],
TP=TH1/310.132(γ+0.2)0.559T_P=\frac{T_{H_{1/3}}}{1-0.132(\gamma+0.2)^{-0.559}},

对于平均Jonswap谱来说:
γ=3.3,σa=0.07,σb=0.09,\gamma=3.3,\sigma_a=0.07,\sigma_b=0.09,
α=0.076Xˉ0.22,Xˉ=101to105,\alpha=0.076\bar{X}^{-0.22},\bar{X}=10^{-1}to10^{5},
ωm=22(g/Uˉ)Xˉ0.33\omega_m=22(g/\bar{U})\bar{X}^{-0.33}
fm=3.5(g/Uˉ)Xˉ0.33f_m=3.5(g/\bar{U})\bar{X}^{-0.33},
Xˉ=gX/U2.\bar{X}=gX/U^2.
峰型参数σ=σa\sigma=\sigma_a(当ω<=ωm\omega<=\omega_m时),σ=σb\sigma=\sigma_b(当ω>ωm\omega>\omega_m)时。

% Improved Jonswap Spectral
% Designed by: JN-Cui 
% Modified on 12/09/2019
%% DEFINITIONS
% alpha - energy scale factor; gama - spectral peak elevation factor;
% omega_m - spectral peak circular frequency; f_m - spectral peak frequency;
% U - wind speed at 10 m above sea surface; H_s - significant wave height;
% g - gravity acceleration;
%% FOR AVERAGE JONSWAP SPECTRAL
% gama=3.3; k=83.7; sigma_a=0.07; sigma_b=0.09;
% alpha=0.076*(X_bar)^(-0.22);
% X_bar=10^(-1)~20^(5); omega_m=22(g/U)*(X_bar)^(-0.33);
% f_m=3.5(g/U)(X_bar)^(-0.33);
%% IMPUT PARAMETERS
% H_s - significant wave height; T_s -  wave period at 1/3 wave height
% dm - calculation interval of omega
%% FUNCTION

function [S,Omega,omega_p,T_p]=Improved_Jonswap_spectral(H_s,T_s,dm)
gama=3.3; sigma_a=0.07;sigma_b=0.09;
beta_j=0.06238/(0.23+0.0336*gama-0.185*(1.9+gama)^(-1))*(1.094-0.01915*log(gama));
T_p=T_s/(1-0.132*(gama+0.2)^(-0.559));
f_p=1/T_p;
omega_p=f_p*2*pi;
i=1;
df=dm/2/pi;
S_o=zeros(1,length(0:dm:1/T_s*2*pi*4));
Omega1=zeros(1,length(0:dm:1/T_s*2*pi*4));
for omega=0:dm:1/T_s*2*pi*4
    if omega<omega_p
        sigma=sigma_a;
        S_o(i)=beta_j*H_s^2*T_p^(-4)*(omega/2/pi)^(-5)*exp(-5/4*((omega_p/omega))^(4))...
            *gama^(exp(-((omega)/omega_p-1)^2/(2*sigma^2)))/(2*pi);
    else
        sigma=sigma_b;
        S_o(i)=beta_j*H_s^2*T_p^(-4)*(omega/2/pi)^(-5)*exp(-5/4*((omega_p/omega))^(4))...
            *gama^(exp(-((omega)/omega_p-1)^2/(2*sigma^2)))/(2*pi);
    end
    Omega1(i)=omega; 
    i=i+1;
end
Omega=Omega1(2:end);
S=S_o(2:end);
end

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!