随机海浪往往具有统计特征,组成频率会呈现出某一频率集中的特征。由此而衍生出的海浪谱多种多样。其中较为著名的一种海浪谱Jonswap被广泛应用在海洋科学、海洋工程领域。
以合田改进的Jonswap谱(1999)为例:
其中,
,
,
对于平均Jonswap谱来说:
或
峰型参数(当时),(当)时。
% Improved Jonswap Spectral
% Designed by: JN-Cui
% Modified on 12/09/2019
%% DEFINITIONS
% alpha - energy scale factor; gama - spectral peak elevation factor;
% omega_m - spectral peak circular frequency; f_m - spectral peak frequency;
% U - wind speed at 10 m above sea surface; H_s - significant wave height;
% g - gravity acceleration;
%% FOR AVERAGE JONSWAP SPECTRAL
% gama=3.3; k=83.7; sigma_a=0.07; sigma_b=0.09;
% alpha=0.076*(X_bar)^(-0.22);
% X_bar=10^(-1)~20^(5); omega_m=22(g/U)*(X_bar)^(-0.33);
% f_m=3.5(g/U)(X_bar)^(-0.33);
%% IMPUT PARAMETERS
% H_s - significant wave height; T_s - wave period at 1/3 wave height
% dm - calculation interval of omega
%% FUNCTION
function [S,Omega,omega_p,T_p]=Improved_Jonswap_spectral(H_s,T_s,dm)
gama=3.3; sigma_a=0.07;sigma_b=0.09;
beta_j=0.06238/(0.23+0.0336*gama-0.185*(1.9+gama)^(-1))*(1.094-0.01915*log(gama));
T_p=T_s/(1-0.132*(gama+0.2)^(-0.559));
f_p=1/T_p;
omega_p=f_p*2*pi;
i=1;
df=dm/2/pi;
S_o=zeros(1,length(0:dm:1/T_s*2*pi*4));
Omega1=zeros(1,length(0:dm:1/T_s*2*pi*4));
for omega=0:dm:1/T_s*2*pi*4
if omega<omega_p
sigma=sigma_a;
S_o(i)=beta_j*H_s^2*T_p^(-4)*(omega/2/pi)^(-5)*exp(-5/4*((omega_p/omega))^(4))...
*gama^(exp(-((omega)/omega_p-1)^2/(2*sigma^2)))/(2*pi);
else
sigma=sigma_b;
S_o(i)=beta_j*H_s^2*T_p^(-4)*(omega/2/pi)^(-5)*exp(-5/4*((omega_p/omega))^(4))...
*gama^(exp(-((omega)/omega_p-1)^2/(2*sigma^2)))/(2*pi);
end
Omega1(i)=omega;
i=i+1;
end
Omega=Omega1(2:end);
S=S_o(2:end);
end
来源:CSDN
作者:Jr.Cui
链接:https://blog.csdn.net/Nick_Cui/article/details/103463349