1. tf.tile
import tensorflow as tf
temp = tf.tile([[1,2,3],[1,2,3]],[1,1])
temp2 = tf.tile([[1,2,3],[1,2,3]],[2,1])
temp3 = tf.tile([[1,2,3],[1,2,3]],[2,2])
with tf.Session() as sess:
print(sess.run(temp))
print(sess.run(temp2))
print(sess.run(temp3))
[[1 2 3]
[1 2 3]]
[[1 2 3]
[1 2 3]
[1 2 3]
[1 2 3]]
[[1 2 3 1 2 3]
[1 2 3 1 2 3]
[1 2 3 1 2 3]
[1 2 3 1 2 3]]
2.tf.reduce_xxx(input_tensor, axis=None, keep_dims=False)
沿着axis指定的维度上进行相应的xxx操作。当keep_dims=False时返回结果降一维;keep_dims=True时结果维度保持和输入相同。
xxx = sum 即求和
a = tf.constant([[1,2,3],[4,5,6]])
z=tf.reduce_sum(a)
z2=tf.reduce_sum(a,0)
z3=tf.reduce_sum(a,1)
z==>21
z2==>[5 7 9]
z3==>[6 15]
xxx = prob 即求元素的积
a = tf.constant([[1,2,3],[4,5,6]])
z=tf.reduce_prod(a)
z2=tf.reduce_prod(a,0)
z3=tf.reduce_prod(a,1)
z==>720
z2==>[4 10 18]
z3==>[6 120]
xxx = min 即求最小
a = tf.constant([[1,2,3],[4,5,6]])
z=tf.reduce_min(a)
z2=tf.reduce_min(a,0)
z3=tf.reduce_min(a,1)
z==>1
z2==>[1 2 3]
z3==>[1 4]
xxx = all 即求逻辑与
a = tf.constant([[True,True,False,False],[True,False,False,True]])
z=tf.reduce_all(a)
z2=tf.reduce_all(a,0)
z3=tf.reduce_all(a,1)
z==>False
z2==>[True False False False]
z3==>[False False]
xxx = any 即求逻辑或
a = tf.constant([[True,True,False,False],[True,False,False,True]])
z=tf.reduce_any(a)
z2=tf.reduce_any(a,0)
z3=tf.reduce_any(a,1)
z==>True
z2==>[True True False True]
z3==>[True True]
xxx = logsumexp 即按着axis维度计算log(sum(exp()))
a = tf.constant([[0,0,0],[0,0,0]],dtype=tf.float64)
z=tf.reduce_logsumexp(a)
z2=tf.reduce_logsumexp(a,0)
z3=tf.reduce_logsumexp(a,1)
z==>1.79175946923#log(6)
z2==>[0.69314718 0.69314718 0.69314718]#[log(2) log(2) log(2)]
z3==>[1.09861229 1.09861229]#[log(3) log(3)]
3.tf.greater(a, b)
按元素比较a和b的大小,返回比较后的bool值
a = [-1,0,1,-2]
sess=tf.Session()
with sess.as_default():
print(tf.greater(a,0).eval())
output : [False, False, True, False]
4.tf.nn.top_k(a, k)
返回top_k后的值和其在原数组中的索引
import tensorflow as tf
import numpy as np
input = tf.constant(np.random.rand(3,4))
k = 2
output = tf.nn.top_k(input, k)
with tf.Session() as sess:
print(sess.run(input))
print(sess.run(output))
output:
[[ 0.98925872 0.15743092 0.76471106 0.5949957 ]
[ 0.95766488 0.67846336 0.21058844 0.2644312 ]
[ 0.65531991 0.61445187 0.65372938 0.88111084]]
TopKV2(values=array([[ 0.98925872, 0.76471106],
[ 0.95766488, 0.67846336],
[ 0.88111084, 0.65531991]]), indices=array([[0, 2],
[0, 1],
[3, 0]]))
5.tf.boolen_mask(a,b)
使a (m维)矩阵仅保留与b中“True”元素同下标的部分,并将结果展开到m-1维,并返回这个m-1维的矩阵
import tensorflow as tf
a = np.random.randn(3, 3,3)
b = np.max(a,-1)
c= b >0.5
print("a="+str(a))
print("b="+str(b))
print("c="+str(c))
with tf.Session() as sess:
d=tf.boolean_mask(a,c)
print("d="+str(d.eval(session=sess)))
a=[[[-0.14230925 0.5723012 1.07004655]
[-0.93580522 -0.44670888 -1.05299618]
[ 1.14027769 0.72972377 -1.03160013]]
[[-0.44742032 -0.11966653 -0.52264924]
[-0.26495305 -0.76930746 1.83077196]
[ 0.46775164 1.14675178 -0.95681442]]
[[ 0.15298233 0.17604346 1.56358203]
[-0.28835174 -1.05588625 0.73805878]
[ 0.4033133 -0.67741436 0.23416563]]]
b=[[ 1.07004655 -0.44670888 1.14027769]
[-0.11966653 1.83077196 1.14675178]
[ 1.56358203 0.73805878 0.4033133 ]]
c=[[ True False True]
[False True True]
[ True True False]]
d=[[-0.14230925 0.5723012 1.07004655]
[ 1.14027769 0.72972377 -1.03160013]
[-0.26495305 -0.76930746 1.83077196]
[ 0.46775164 1.14675178 -0.95681442]
[ 0.15298233 0.17604346 1.56358203]
[-0.28835174 -1.05588625 0.73805878]]
可以看出就是找出了a中在第三维上最大值大于0.5的所有行。此API可以用来帮助筛选符合条件的元素。来源:CSDN
作者:remanented
链接:https://blog.csdn.net/remanented/article/details/79816275