第51课 - 二叉排序树
1. 二分查找的回顾
(1)二分查找的特点
二分查找能够提高有序表中数据元素的查找速度。
二分查找的时间复杂度为O(log2n)。
二分查找是一种静态查找。
(2)二分查找的不足
当查找表经常变化时,二分查找的整体性能急剧下降。
2. 二分查找的硬伤
二分查找基于有序表。
当需要插入或者删除数据元素时,为了能够继续进行二分查找,需要大规模挪动有序表中的数据元素,使得插入或者删除后的线性表保持有序。
3. 二分查找的过程
二分查找的过程是一棵二叉树!
特点:
任意一个结点的值都大于其左子树的所有结点值。
任意一个结点的值都小于其右子树的所有结点值。
4. 新的想法
直接组织一棵具有二分查找特性的二叉树。二分查找过程即变换为对树结点的查找过程,由二分查找的特性可知树结点查找的时间复杂度为O(log2n),只在叶结点处插入新结点即可保持特性不变,删除树结点时也可以容易的保持特性不变
5. 二叉排序树
二叉排序树是一棵空树,或者若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左右子树也分别是二叉排序树。
插入:其插入操作总是在叶结点处进行。
删除:叶结点:直接删除;非叶结点:查找合适的替代者后删除。
如何为删除操作查找合适的替代者?
有一个孩子的结点:用孩子结点代替原结点。
有两个孩子的结点:用中序遍历下的直接前驱替换原结点。
6. 程序
main.c
#include <stdio.h>
#include <stdlib.h>
#include "BSTree.h"
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
struct Node
{
BSTreeNode header;
char v;
};
void printf_data(BSTreeNode* node)
{
if( node != NULL )
{
printf("%c", ((struct Node*)node)->v);
}
}
int compare_key(BSKey* k1, BSKey* k2)
{
return (int)k1 - (int)k2;
}
int main(int argc, char *argv[])
{
BSTree* tree = BSTree_Create();
struct Node n1 = {{(BSKey*)1, NULL, NULL}, 'A'};
struct Node n2 = {{(BSKey*)2, NULL, NULL}, 'B'};
struct Node n3 = {{(BSKey*)3, NULL, NULL}, 'C'};
struct Node n4 = {{(BSKey*)4, NULL, NULL}, 'D'};
struct Node n5 = {{(BSKey*)5, NULL, NULL}, 'E'};
struct Node n6 = {{(BSKey*)6, NULL, NULL}, 'F'};
BSTree_Insert(tree, (BSTreeNode*)&n4, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n1, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n3, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n6, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n2, compare_key);
BSTree_Insert(tree, (BSTreeNode*)&n5, compare_key);
printf("Height: %d\n", BSTree_Height(tree));
printf("Degree: %d\n", BSTree_Degree(tree));
printf("Count: %d\n", BSTree_Count(tree));
printf("Search Key 5: %c\n", ((struct Node*)BSTree_Get(tree, (BSKey*)5, compare_key))->v);
printf("Full Tree: \n");
BSTree_Display(tree, printf_data, 4, '-');
BSTree_Delete(tree, (BSKey*)4, compare_key);
printf("After Delete Key 4: \n");
printf("Height: %d\n", BSTree_Height(tree));
printf("Degree: %d\n", BSTree_Degree(tree));
printf("Count: %d\n", BSTree_Count(tree));
printf("Full Tree: \n");
BSTree_Display(tree, printf_data, 4, '-');
BSTree_Clear(tree);
printf("After Clear: \n");
printf("Height: %d\n", BSTree_Height(tree));
printf("Degree: %d\n", BSTree_Degree(tree));
printf("Count: %d\n", BSTree_Count(tree));
BSTree_Display(tree, printf_data, 4, '-');
BSTree_Destroy(tree);
return 0;
}
BSTree.h
#ifndef _BSTREE_H_
#define _BSTREE_H_
typedef void BSTree;
typedef void BSKey;
typedef struct _tag_BSTreeNode BSTreeNode;
struct _tag_BSTreeNode
{
BSKey* key;
BSTreeNode* left;
BSTreeNode* right;
};
typedef void (BSTree_Printf)(BSTreeNode*);
typedef int (BSTree_Compare)(BSKey*, BSKey*);
BSTree* BSTree_Create();
void BSTree_Destroy(BSTree* tree);
void BSTree_Clear(BSTree* tree);
int BSTree_Insert(BSTree* tree, BSTreeNode* node, BSTree_Compare* compare);
BSTreeNode* BSTree_Delete(BSTree* tree, BSKey* key, BSTree_Compare* compare);
BSTreeNode* BSTree_Get(BSTree* tree, BSKey* key, BSTree_Compare* compare);
BSTreeNode* BSTree_Root(BSTree* tree);
int BSTree_Height(BSTree* tree);
int BSTree_Count(BSTree* tree);
int BSTree_Degree(BSTree* tree);
void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div);
#endif
BSTree.c
#include <stdio.h>
#include <malloc.h>
#include "BSTree.h"
typedef struct _tag_BSTree TBSTree;
struct _tag_BSTree
{
int count;
BSTreeNode* root;
};
static void recursive_display(BSTreeNode* node, BSTree_Printf* pFunc, int format, int gap, char div) // O(n)
{
int i = 0;
if( (node != NULL) && (pFunc != NULL) )
{
for(i=0; i<format; i++)
{
printf("%c", div);
}
pFunc(node);
printf("\n");
if( (node->left != NULL) || (node->right != NULL) )
{
recursive_display(node->left, pFunc, format + gap, gap, div);
recursive_display(node->right, pFunc, format + gap, gap, div);
}
}
else
{
for(i=0; i<format; i++)
{
printf("%c", div);
}
printf("\n");
}
}
static int recursive_count(BSTreeNode* root) // O(n)
{
int ret = 0;
if( root != NULL )
{
ret = recursive_count(root->left) + 1 + recursive_count(root->right);
}
return ret;
}
static int recursive_height(BSTreeNode* root) // O(n)
{
int ret = 0;
if( root != NULL )
{
int lh = recursive_height(root->left);
int rh = recursive_height(root->right);
ret = ((lh > rh) ? lh : rh) + 1;
}
return ret;
}
static int recursive_degree(BSTreeNode* root) // O(n)
{
int ret = 0;
if( root != NULL )
{
if( root->left != NULL )
{
ret++;
}
if( root->right != NULL )
{
ret++;
}
if( ret == 1 )
{
int ld = recursive_degree(root->left);
int rd = recursive_degree(root->right);
if( ret < ld )
{
ret = ld;
}
if( ret < rd )
{
ret = rd;
}
}
}
return ret;
}
static int recursive_insert(BSTreeNode* root, BSTreeNode* node, BSTree_Compare* compare)
{
int ret = 1;
int r = compare(node->key, root->key);
if( r == 0 )
{
ret = 0;
}
else if( r < 0 )
{
if( root->left != NULL )
{
ret = recursive_insert(root->left, node, compare);
}
else
{
root->left = node;
}
}
else if( r > 0 )
{
if( root->right != NULL )
{
ret = recursive_insert(root->right, node, compare);
}
else
{
root->right = node;
}
}
}
static BSTreeNode* recursive_get(BSTreeNode* root, BSKey* key, BSTree_Compare* compare)
{
BSTreeNode* ret = NULL;
if( root != NULL )
{
int r = compare(key, root->key);
if( r == 0 )
{
ret = root;
}
else if( r < 0 )
{
ret = recursive_get(root->left, key, compare);
}
else if( r > 0 )
{
ret = recursive_get(root->right, key, compare);
}
}
return ret;
}
static BSTreeNode* delete_node(BSTreeNode** pRoot)
{
BSTreeNode* ret = *pRoot;
if( (*pRoot)->right == NULL )
{
*pRoot = (*pRoot)->left;
}
else if( (*pRoot)->left == NULL )
{
*pRoot = (*pRoot)->right;
}
else
{
BSTreeNode* g = *pRoot;
BSTreeNode* c = (*pRoot)->left;
while( c->right != NULL )
{
g = c;
c = c->right;
}
if( g != *pRoot )
{
g->right = c->left;
}
else
{
g->left = c->left;
}
c->left = (*pRoot)->left;
c->right = (*pRoot)->right;
*pRoot = c;
}
return ret;
}
static BSTreeNode* recursive_delete(BSTreeNode** pRoot, BSKey* key, BSTree_Compare* compare)
{
BSTreeNode* ret = NULL;
if( (pRoot != NULL) && (*pRoot != NULL) )
{
int r = compare(key, (*pRoot)->key);
if( r == 0 )
{
ret = delete_node(pRoot);
}
else if( r < 0 )
{
ret = recursive_delete(&((*pRoot)->left), key, compare);
}
else if( r > 0 )
{
ret = recursive_delete(&((*pRoot)->right), key, compare);
}
}
return ret;
}
BSTree* BSTree_Create() // O(1)
{
TBSTree* ret = (TBSTree*)malloc(sizeof(TBSTree));
if( ret != NULL )
{
ret->count = 0;
ret->root = NULL;
}
return ret;
}
void BSTree_Destroy(BSTree* tree) // O(1)
{
free(tree);
}
void BSTree_Clear(BSTree* tree) // O(1)
{
TBSTree* btree = (TBSTree*)tree;
if( btree != NULL )
{
btree->count = 0;
btree->root = NULL;
}
}
int BSTree_Insert(BSTree* tree, BSTreeNode* node, BSTree_Compare* compare)
{
TBSTree* btree = (TBSTree*)tree;
int ret = (btree != NULL) && (node != NULL) && (compare != NULL);
if( ret )
{
node->left = NULL;
node->right = NULL;
if( btree->root == NULL )
{
btree->root = node;
}
else
{
ret = recursive_insert(btree->root, node, compare);
}
if( ret )
{
btree->count++;
}
}
return ret;
}
BSTreeNode* BSTree_Delete(BSTree* tree, BSKey* key, BSTree_Compare* compare)
{
TBSTree* btree = (TBSTree*)tree;
BSTreeNode* ret = NULL;
if( (btree != NULL) && (key != NULL) && (compare != NULL) )
{
ret = recursive_delete(&btree->root, key, compare);
if( ret != NULL )
{
btree->count--;
}
}
return ret;
}
BSTreeNode* BSTree_Get(BSTree* tree, BSKey* key, BSTree_Compare* compare)
{
TBSTree* btree = (TBSTree*)tree;
BSTreeNode* ret = NULL;
if( (btree != NULL) && (key != NULL) && (compare != NULL) )
{
ret = recursive_get(btree->root, key, compare);
}
return ret;
}
BSTreeNode* BSTree_Root(BSTree* tree) // O(1)
{
TBSTree* btree = (TBSTree*)tree;
BSTreeNode* ret = NULL;
if( btree != NULL )
{
ret = btree->root;
}
return ret;
}
int BSTree_Height(BSTree* tree) // O(n)
{
TBSTree* btree = (TBSTree*)tree;
int ret = 0;
if( btree != NULL )
{
ret = recursive_height(btree->root);
}
return ret;
}
int BSTree_Count(BSTree* tree) // O(1)
{
TBSTree* btree = (TBSTree*)tree;
int ret = 0;
if( btree != NULL )
{
ret = btree->count;
}
return ret;
}
int BSTree_Degree(BSTree* tree) // O(n)
{
TBSTree* btree = (TBSTree*)tree;
int ret = 0;
if( btree != NULL )
{
ret = recursive_degree(btree->root);
}
return ret;
}
void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div) // O(n)
{
TBSTree* btree = (TBSTree*)tree;
if( btree != NULL )
{
recursive_display(btree->root, pFunc, 0, gap, div);
}
}
小结:
(1) 二分查找仅适用于静态查找的情形。
(2) 二叉排序树是从二分查找的过程总结而来的一种数据结构。
(3) 二叉排序树的查找效率和二分查找相同。
(4) 二叉排序树是特殊的二叉树其插入和删除操作必须保证其二叉排序的性质不变。