Spark crash while reading json file when linked with aws-java-sdk

孤者浪人 提交于 2019-12-06 22:17:41

问题


Let config.json be a small json file :

{
    "toto": 1
}

I made a simple code that read the json file with sc.textFile (because the file can be on S3, local or HDFS, so textFile is convenient)

import org.apache.spark.{SparkContext, SparkConf}

object testAwsSdk {
  def main( args:Array[String] ):Unit = {
    val sparkConf = new SparkConf().setAppName("test-aws-sdk").setMaster("local[*]")
    val sc = new SparkContext(sparkConf)
    val json = sc.textFile("config.json") 
    println(json.collect().mkString("\n"))
  }
}

The SBT file pull only spark-core library

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % "1.5.1" % "compile"
)

the program works as expected, writing the content of config.json on standard output.

Now I want to link also with aws-java-sdk, amazon's sdk to access S3.

libraryDependencies ++= Seq(
  "com.amazonaws" % "aws-java-sdk" % "1.10.30" % "compile",
  "org.apache.spark" %% "spark-core" % "1.5.1" % "compile"
)

Executing the same code, spark throws the following Exception.

Exception in thread "main" com.fasterxml.jackson.databind.JsonMappingException: Could not find creator property with name 'id' (in class org.apache.spark.rdd.RDDOperationScope)
 at [Source: {"id":"0","name":"textFile"}; line: 1, column: 1]
    at com.fasterxml.jackson.databind.JsonMappingException.from(JsonMappingException.java:148)
    at com.fasterxml.jackson.databind.DeserializationContext.mappingException(DeserializationContext.java:843)
    at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.addBeanProps(BeanDeserializerFactory.java:533)
    at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.buildBeanDeserializer(BeanDeserializerFactory.java:220)
    at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.createBeanDeserializer(BeanDeserializerFactory.java:143)
    at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer2(DeserializerCache.java:409)
    at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer(DeserializerCache.java:358)
    at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCache2(DeserializerCache.java:265)
    at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCacheValueDeserializer(DeserializerCache.java:245)
    at com.fasterxml.jackson.databind.deser.DeserializerCache.findValueDeserializer(DeserializerCache.java:143)
    at com.fasterxml.jackson.databind.DeserializationContext.findRootValueDeserializer(DeserializationContext.java:439)
    at com.fasterxml.jackson.databind.ObjectMapper._findRootDeserializer(ObjectMapper.java:3666)
    at com.fasterxml.jackson.databind.ObjectMapper._readMapAndClose(ObjectMapper.java:3558)
    at com.fasterxml.jackson.databind.ObjectMapper.readValue(ObjectMapper.java:2578)
    at org.apache.spark.rdd.RDDOperationScope$.fromJson(RDDOperationScope.scala:82)
    at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:133)
    at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:133)
    at scala.Option.map(Option.scala:145)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:133)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
    at org.apache.spark.SparkContext.withScope(SparkContext.scala:709)
    at org.apache.spark.SparkContext.hadoopFile(SparkContext.scala:1012)
    at org.apache.spark.SparkContext$$anonfun$textFile$1.apply(SparkContext.scala:827)
    at org.apache.spark.SparkContext$$anonfun$textFile$1.apply(SparkContext.scala:825)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
    at org.apache.spark.SparkContext.withScope(SparkContext.scala:709)
    at org.apache.spark.SparkContext.textFile(SparkContext.scala:825)
    at testAwsSdk$.main(testAwsSdk.scala:11)
    at testAwsSdk.main(testAwsSdk.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)

Reading the stack, it seems that when aws-java-sdk is linked, sc.textFile detects that the file is a json file and try to parse it with jackson assuming a certain format, which it cannot find of course. I need to link with aws-java-sdk, so my questions are:

1- Why adding aws-java-sdk modifies the behavior of spark-core?

2- Is there a work-around (the file can be on HDFS, S3 or local)?


回答1:


Talked to Amazon support. It is a depency issue with Jackson library. In SBT, override jackson:

libraryDependencies ++= Seq( 
"com.amazonaws" % "aws-java-sdk" % "1.10.30" % "compile",
"org.apache.spark" %% "spark-core" % "1.5.1" % "compile"
) 

dependencyOverrides ++= Set( 
"com.fasterxml.jackson.core" % "jackson-databind" % "2.4.4" 
) 

their answer: We have done this on a Mac, Ec2 (redhat AMI) instance and on EMR (Amazon Linux). 3 Different environments. Root cause of the issue is that sbt builds a dependency graph and then deals with the issue of version conflicts by evicting the older version and picking the latest version of the dependent library. In this case, the spark depends on the 2.4 version of jackson library while the AWS SDK needs 2.5. So there is a version conflict and the sbt evicts spark's dependency version (which is older) and picks the AWS SDK version (which is the latest).




回答2:


Adding to Boris' answer, if you don't want to use a fixed version of Jackson (maybe in the future you will upgrade Spark) but still want to discard the one from AWS, you can do the following:

libraryDependencies ++= Seq( 
  "com.amazonaws" % "aws-java-sdk" % "1.10.30" % "compile" excludeAll (
    ExclusionRule("com.fasterxml.jackson.core", "jackson-databind")
  ),
  "org.apache.spark" %% "spark-core" % "1.5.1" % "compile"
) 


来源:https://stackoverflow.com/questions/33465686/spark-crash-while-reading-json-file-when-linked-with-aws-java-sdk

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!