3D Reconstruction and SfM Camera Intrinsic Parameters

混江龙づ霸主 提交于 2019-12-06 15:10:11

I am unsure about the focal plane, so I will come back to it after I write about the other concepts you mention. Suppose you have a pinhole camera model with rectangular pixels, and let P=[X Y Z]^T be a point in camera space, with ^T denoting the transpose. In that case (assuming Z is the camera axis), this point can be projected as p=KP where K (the calibration matrix) is

f_x  0   c_x
0   f_y  c_y
0    0    1 

(of course, you will want to divide p by its third coordinate after that).

The focal length, that I will note f is the distance between the camera center and the image plane. The variables

f_x=s_x*f 
f_y=s_y*f

in the matrix above respectively express this value in terms of pixel width and height. The variables s_x and s_y are the scale factors that are mentioned on the page you cite. The scale factor is the ratio between the size (width or height) of pixels and the units that you use in camera space. So, for example, if your pixel widths are half the size of the units you use on the x axis of camera space, you will have s_x=2.

I have seen people use the term principal point to refer to different things. While some people define it as the intersection between the camera axis and the image plane (Wikipedia seems to do this), others define it as the point given by [c_x c_y]^T. For clarity's sake, let's separate the whole projection process:

The two terms on the right hand side of the equation do different things. The first one scales the point and puts it into the image plane. The second term (i.e. [c_x c_y 1]^T) shifts the result from the other term. So, [-c_x ,-c_y]^T is the center of the image's coordinate system.

As for the difference between tangential/radial distortion: usually when correcting distortion, we assume that the center of the image o remains undistorted. A pixel p will have "moved away" from its true position q under the effect of distortion. If that movement is along the vector q-o then the distortion is radial, but if that movement has a component in a different direction, it is said to (also) have tangential distortion.

As I said I'm a bit unsure about what the focal plane they show in their figure means, but I think the term usually refers to the plane on which the upside-down image would form in a physical pinhole camera. A point P on the image plane (expressed in world coordinates) would just be -P on the focal plane.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!