1. 简介
simhash是一种局部敏感hash。那什么叫局部敏感呢,假定两个字符串具有一定的相似性,在hash之后,仍然能保持这种相似性,就称之为局部敏感hash。普通的hash是不具有这种属性的。simhash被Google用来在海量文本中去重。
2. 原理
算法过程大概如下:
- 将Doc进行关键词抽取(其中包括分词和计算权重),抽取出n个(关键词,权重)对, 即图中的多个
(feature, weight)
。 记为feature_weight_pairs = [fw1, fw2 … fwn]
,其中fwn = (feature_n,weight_n)
。 - 对每个
feature_weight_pairs
中的feature
进行hash。 图中假设hash生成的位数bits_count = 6。 - 然后对
hash_weight_pairs
进行位的纵向累加,如果该位是1,则+weight
,如果是0,则-weight
,最后生成bits_count个数字,如图所示是[13, 108, -22, -5, -32, 55]
, 这里产生的值和hash函数所用的算法相关。 [13,108,-22,-5,-32,55] -> 110001
这个就很简单啦,正1负0。
3. 距离计算
通过simhash,我们要度量两个文档的相似度就可以通过度量它们的simhash值相似度。度量两个simhash值相似度一般使用海明距离。
二进制串A和二进制串B的海明距离 就是A异或B后二进制中1的个数。
举例如下:
A = 100111;
B = 101010;
hamming_distance(A, B) = count_1(A xor B) = count_1(001101) = 3
A和B的海明距离是否小于等于n,这个n值根据经验一般取值为3。
4. Python使用
使用simhash。
(1) 查看simhash值
>>> from simhash import Simhash
>>> print '%x' % Simhash(u'I am very happy'.split()).value
9f8fd7efdb1ded7f
Simhash()
接收一个token序列,或者叫特征序列。
(2)计算两个simhash值距离
>>> hash1 = Simhash(u'I am very happy'.split())
>>> hash2 = Simhash(u'I am very sad'.split())
>>> print hash1.distance(hash2)
5
(3)建立索引
simhash被用来去重。如果两两分别计算simhash值,数据量较大的情况下肯定hold不住。有专门的数据结构,参考:http://www.cnblogs.com/maybe2030/p/5203186.html#_label4
from simhash import Simhash, SimhashIndex
# 建立索引
data = {
u'1': u'How are you I Am fine . blar blar blar blar blar Thanks .'.lower().split(),
u'2': u'How are you i am fine .'.lower().split(),
u'3': u'This is simhash test .'.lower().split(),
}
objs = [(id, Simhash(sent)) for id, sent in data.items()]
index = SimhashIndex(objs, k=10) # k是容忍度;k越大,检索出的相似文本就越多
# 检索
s1 = Simhash(u'How are you . blar blar blar blar blar Thanks'.lower().split())
print index.get_near_dups(s1)
# 增加新索引
index.add(u'4', s1)
Ref
http://yanyiwu.com/work/2014/01/30/simhash-shi-xian-xiang-jie.html
http://blog.csdn.net/madujin/article/details/53152619
http://leons.im/posts/a-python-implementation-of-simhash-algorithm/
来源:CSDN
作者:BrownWong
链接:https://blog.csdn.net/qq_16912257/article/details/72156277