scipy.optimize.minimize (COBYLA and SLSQP) ignores constraints initiated within for loop

给你一囗甜甜゛ 提交于 2019-12-06 03:43:53

I don't really know Python, but i know how to solve your problem. In your first snippet const function uses reference to t itself (because inner function shares scope with outer), thus producing equivalent of:

cons[0] = {'type':'ineq', 'fun': lambda x: x[t]}
cons[1] = {'type':'ineq', 'fun': lambda x: x[t]} 
cons[2] = {'type':'ineq', 'fun': lambda x: x[t]} 
cons[3] = {'type':'ineq', 'fun': lambda x: x[t]}

which is wrong. This could be fixed by using curry:

import numpy as np
from scipy.optimize import minimize

def function(x):
    return -1*(18*x[0]+16*x[1]+12*x[2]+11*x[3])

I=np.array((20,50,50,80))
x0=I

cons=[]
steadystate={'type':'eq', 'fun': lambda x: x.sum()-I.sum() }
cons.append(steadystate)

def f(a):
    def g(x):
        return x[a]
    return g

for t in range (4):
    cons.append({'type':'ineq', 'fun': f(t)})

out=minimize(function, x0, method="SLSQP", constraints=cons)
x=out["x"]

Under the curtains, this approach creates a new reference to value held by t (when you pass it as argument to f) and stores this reference for use in g, now generating series of correct functions.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!