fftw c2c: missing symmetry in transformed real data

故事扮演 提交于 2019-12-05 18:26:05

For a 2D Fourier transform, it is still true that when x is real FFT(x) is conjugate-symmetric. But that's in two dimensions. So the (x,y) element at index 16*x+y should be the conjugate of the (16-x,16-y) element at index 16*(16-x mod 16)+(16-y mod 16), which when y isn't 0 is 272-16*x-y mod 256.

BUT I think that although you said 16x16 you actually meant 8x8. So (x,y) at 8*x+y is conjugate to (8-x,8-y) at 8*(8-x mod 8) + (8-y mod 8).

In particular, e.g., when x=0 the conjugate elements are y and 8-y -- including, for instance, 3 and 5, as you found.

(When x=0 or y=0, things like "8-y mod 8" above mean 0.)

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!