极大似然估计

陌路散爱 提交于 2019-12-05 12:14:10
它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。极大似然原理的直观想法我们用下面例子说明。设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。一般说来,事件A发生的概率与某一未知参数

有关,

取值不同,则事件A发生的概率

也不同,当我们在一次试验中事件A发生了,则认为此时的

值应是t的一切可能取值中使

达到最大的那一个,极大似然估计法就是要选取这样的t值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。
当然极大似然估计只是一种粗略的数学期望,要知道它的误差大小还要做区间估计。
 
1.求极大似然函数估计值的一般步骤:
(1) 写出似然函数
(2) 对似然函数取对数,并整理;
(3) 求导数
(4) 解似然方程 。
2.利用高等数学中求多元函数的极值的方法,有以下极大似然估计法的具体做法:
(1)根据总体的分布,建立似然函数

;
(2) 当 L 关于

可微时,(由微积分求极值的原理)可由方程组

:
定出

,称以上方程组为似然方程.
因为 L 与

有相同的极大值点,所以

也可由方程组

定出

,称以上方程组为对数似然方程;

就是所求参数

的极大似然估计量。
当总体是离散型的,将上面的概率密度函数

,换成它的分布律

. [2]
 
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!