问题
I am trying to generate a custom loss function in TF/Keras,the loss function works if it is run in a session and passed constants, however, it stops working when compiled into a Keras.
The cost function (thanks to Lior for converting it to TF)
def ginicTF(actual,pred):
n = int(actual.get_shape()[-1])
inds = K.reverse(tf.nn.top_k(pred,n)[1],axes=[0])
a_s = K.gather(actual,inds)
a_c = K.cumsum(a_s)
giniSum = K.sum(a_c)/K.sum(a_s) - (n+1)/2.0
return giniSum / n
def gini_normalizedTF(a,p):
return -ginicTF(a, p) / ginicTF(a, a)
#Test the cost function
sess = tf.InteractiveSession()
p = [0.9, 0.3, 0.8, 0.75, 0.65, 0.6, 0.78, 0.7, 0.05, 0.4, 0.4, 0.05, 0.5, 0.1, 0.1]
a = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
ac = tf.placeholder(shape=(len(a),),dtype=K.floatx())
pr = tf.placeholder(shape=(len(p),),dtype=K.floatx())
print(gini_normalizedTF(ac,pr).eval(feed_dict={ac:a,pr:p}))
this prints -0.62962962963, which is the correct value.
Now let's put this into Keras MLP
def makeModel(n_feat):
model = Sequential()
#hidden layer #1
model.add(layers.Dense(12, input_shape=(n_feat,)))
model.add(layers.Activation('selu'))
model.add(layers.Dropout(0.2))
#output layer
model.add(layers.Dense(1))
model.add(layers.Activation('softmax'))
model.compile(loss=gini_normalizedTF, optimizer='sgd', metrics=['binary_accuracy'])
return model
model=makeModel(n_feats)
model.fit(x=Mout,y=targets,epochs=n_epochs,validation_split=0.2,batch_size=batch_size)
This generates error
<ipython-input-62-6ade7307336f> in ginicTF(actual, pred)
9 def ginicTF(actual,pred):
10
---> 11 n = int(actual.get_shape()[-1])
12
13 inds = K.reverse(tf.nn.top_k(pred,n)[1],axes=[0])
TypeError: __int__ returned non-int (type NoneType)
I tried going around it by giving a default value of n/etc but this doesn't seem to be going anywhere.
Can someone explain the nature of this problem and how I can remedy it?
Thank you!
Edit:
Updated things to keep it as tensor and then cast
def ginicTF(actual,pred):
nT = K.shape(actual)[-1]
n = K.cast(nT,dtype='int32')
inds = K.reverse(tf.nn.top_k(pred,n)[1],axes=[0])
a_s = K.gather(actual,inds)
a_c = K.cumsum(a_s)
n = K.cast(nT,dtype=K.floatx())
giniSum = K.cast(K.sum(a_c)/K.sum(a_s),dtype=K.floatx()) - (n+1)/2.0
return giniSum / n
def gini_normalizedTF(a,p):
return ginicTF(a, p) / ginicTF(a, a)
Still has the issue of getting "none" when used as a cost function
来源:https://stackoverflow.com/questions/46674293/custom-loss-function-in-keras-how-to-deal-with-placeholders