How do I get standard errors of maximum-likelihood estimates in STAN?

老子叫甜甜 提交于 2019-12-04 08:38:03

问题


I am using maximum-likelihood optimization in Stan, but unfortunately the optimizing() function doesn't report standard errors:

> MLb4c <- optimizing(get_stanmodel(fitb4c), data = win.data, init = inits)  
STAN OPTIMIZATION COMMAND (LBFGS)
init = user
save_iterations = 1
init_alpha = 0.001
tol_obj = 1e-012
tol_grad = 1e-008
tol_param = 1e-008
tol_rel_obj = 10000
tol_rel_grad = 1e+007
history_size = 5
seed = 292156286
initial log joint probability = -4038.66
    Iter      log prob        ||dx||      ||grad||       alpha      alpha0  # evals  Notes 
      13      -2772.49  9.21091e-005     0.0135987     0.07606      0.9845       15   
Optimization terminated normally: 
  Convergence detected: relative gradient magnitude is below tolerance
> t2 <- proc.time()
> print(t2 - t1)
   user  system elapsed 
   0.11    0.19    0.74 
> 
> MLb4c
$par
       psi      alpha       beta 
 0.9495000  0.4350983 -0.2016895 

$value
[1] -2772.489

> summary(MLb4c)
      Length Class  Mode   
par   3      -none- numeric
value 1      -none- numeric

How do I get the standard errors of the estimates (or confidence interval - quantiles), and possibly p-values?

EDIT: I did as kindly advised by @Ben Goodrich:

> MLb4cH <- optimizing(get_stanmodel(fitb4c), data = win.data, init = inits, hessian = TRUE)

> sqrt(diag(solve(-MLb4cH$hessian)))
       psi      alpha       beta 
0.21138314 0.03251696 0.03270493 

But these "unconstrained" standard errors seem to be very different from the real ones - here as is the output from bayesian fitting using stan():

> print(outb4c, dig = 5)
Inference for Stan model: tmp_stan_model.
3 chains, each with iter=500; warmup=250; thin=1; 
post-warmup draws per chain=250, total post-warmup draws=750.

             mean se_mean      sd        2.5%         25%         50%         75%       97.5% n_eff    Rhat
alpha     0.43594 0.00127 0.03103     0.37426     0.41578     0.43592     0.45633     0.49915   594 1.00176
beta     -0.20262 0.00170 0.03167    -0.26640    -0.22290    -0.20242    -0.18290    -0.13501   345 1.00402
psi       0.94905 0.00047 0.01005     0.92821     0.94308     0.94991     0.95656     0.96632   448 1.00083
lp__  -2776.94451 0.06594 1.15674 -2780.07437 -2777.50643 -2776.67139 -2776.09064 -2775.61263   308 1.01220

回答1:


You can specify the hessian = TRUE argument to the optimizing function, which will return the Hessian as part of the list of output. Thus, you can obtain estimated standard errors via sqrt(diag(solve(-MLb4c$hessian))); however those standard errors pertain to the estimates in the unconstrained space. To obtain estimated standard errors for the parameters in the constrained space, you could either use the delta method or draw many times from a multivariate normal distribution whose mean vector is MLb4c$par and whose variance-covariance is solve(-MLb4c$hessian), convert those draws to the constrained space with the constrain_pars function, and estimate the standard deviation of each column.

Here is some R code you could adapt to your case

# 1: Compile and save a model (make sure to pass the data here)
model <- stan(file="model.stan", data=c("N","K","X","y"), chains = 0, iter = 0)

# 2: Fit that model
fit <- optimizing(object=get_stanmodel(model), as_vector = FALSE,
                   data=c("N","K","X","y"), hessian = TRUE)

# 3: Extract the vector theta_hat and the Hessian for the unconstrained parameters
theta_hat <- unlist(fit$par)
upars <- unconstrain_pars(linear, relist(theta_hat, fit$par))
Hessian <- fit$hessian

# 4: Extract the Cholesky decomposition of the (negative) Hessian and invert
R <- chol(-Hessian)
V <- chol2inv(R)
rownames(V) <- colnames(V) <- colnames(Hessian)

# 5: Produce a matrix with some specified number of simulation draws from a multinormal
SIMS <- 1000
len <- length(theta_hat)
unconstrained <- upars + t(chol(V)) %*% 
  matrix(rnorm(SIMS * len), nrow = len, ncol = SIMS)
theta_sims <- t(apply(unconstrained, 2, FUN = function(upars) {
  unlist(constrain_pars(linear, upars))
}))

# 6: Produce estimated standard errors for the constrained parameters
se <- apply(theta_sims, 2, sd)


来源:https://stackoverflow.com/questions/27202395/how-do-i-get-standard-errors-of-maximum-likelihood-estimates-in-stan

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!