Plotting estimated HR from coxph object with time-dependent coefficient and splines

百般思念 提交于 2019-12-04 06:10:15

I think what you need can be generated by generating an input matrix using pspline and matrix-multiplying this by the relevant coefficients from the coxph output. To get the HR, you then need to take the exponent.

i.e.

output <- data.frame(Age = seq(min(lung$age) + min(lung$time) / 365.25,
                               max(lung$age + lung$time / 365.25),
                               0.01))
output$HR <- exp(pspline(output$Age) %*% cox$coefficients[-1] -
                 sum(cox$means[-1] * cox$coefficients[-1]))
library("ggplot2")
ggplot(output, aes(x = Age, y = HR)) + geom_line()

Note the age here is the age at the time of interest (i.e. the sum of the baseline age and the elapsed time since study entry). It has to use the range specified to match with the parameters in the original model. It could also be calculated using the x output from using x = TRUE as shown:

cox <- coxph(Surv(time, status) ~ ph.ecog + tt(age), data=lung,
             tt=function(x,t,...) pspline(x + t/365.25), x = TRUE)
index <- as.numeric(unlist(lapply(strsplit(rownames(cox$x), "\\."), "[", 1)))
ages <- lung$age[index]
output2 <- data.frame(Age = ages + cox$y[, 1] / 365.25,
                      HR = exp(cox$x[, -1] %*% cox$coefficients[-1] -
                               sum(cox$means[-1] * cox$coefficients[-1])))
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!