期望dp
数学期望: \(E(X) = \sum {p_ix_i}\)
数学期望是线性函数,满足\(E(aX + By) = a * E(X) + b * E(Y)\)
接下来看两道毒瘤题
绿豆蛙的归宿
对于每个点,它的期望值 = 当前路径长度 / 起点的出度
所以我们先求出每个点的出度——无非就是在加入每条边的时候统计一下
根据数学期望的定义和性质,
\[F[x]=\frac{1}{k} \sum_{i = 1}^{k} (F[y_i ]+ z_i)\]
显然我们需要用逆推法,也就需要建反图,从\(F[N] = 0\)开始,求F[1]
#include<iostream> #include<cstdio> #include<queue> using namespace std; const int N = 200005; int ver[N], edge[N], head[N], Next[N], tot; int n, m, out[N], deg[N]; double f[N]; void add(int x, int y, int z){ ver[++tot] = y, edge[tot] = z; Next[tot] = head[x], head[x] = tot; } int read(){ int x = 0, ch = getchar(); while(ch < '0' || ch > '9') ch = getchar(); while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x; } queue<int> q; void bfs(){ q.push(n); while(q.size()){ int x = q.front(); q.pop(); for(int i = head[x]; i; i = Next[i]){ int y = ver[i], z = edge[i]; f[y] += (f[x] + z) / deg[y]; out[y]--; if(out[y] == 0) q.push(y); } } } int main(){ cin >> n >> m; for(int i = 1; i <= m; i++){ int x = read(), y = read(), z = read(); add(y, x, z); deg[x]++, out[x]++; } bfs(); printf("%.2f", f[1]); return 0; }