多态指同一个方法根据其所属的不同对象可以有不同的行为(根据自己理解,不知这么说是否严谨)。
举个例子说明虚函数、多态、早绑定和晚绑定:
李氏两兄妹(哥哥和妹妹)参加姓氏运动会(不同姓氏组队参加),哥哥男子项目比赛,妹妹参加女子项目比赛,开幕式有一个参赛队伍代表发言仪式,兄妹俩都想 去露露脸,可只能一人去,最终他们决定到时抓阄决定,而组委会也不反对,它才不关心是哥哥还是妹妹来发言,只要派一个姓李的来说两句话就行。运动会如期举 行,妹妹抓阄获得代表李家发言的机会,哥哥参加了男子项目比赛,妹妹参加了女子项目比赛。比赛结果就不是我们关心的了。
现在让我们来做个类比(只讨论与运动会相关的话题):
(1)类的设计:
李氏兄妹属于李氏家族,李氏是基类(这里还是抽象的纯基类),李氏又派生出两个子类(李氏男和李氏女),李氏男会所有男子项目的比赛(李氏男的成员函 数),李氏女会所有女子项目的比赛(李氏女的成员函数)。姓李的人都会发言(基类虚函数),李氏男和李氏女继承自李氏当然也会发言,只是男女说话声音不一 样,内容也会又差异,给人感觉不同(李氏男和李氏女分别重新定义发言这个虚函数)。李氏两兄妹就是李氏男和李氏女两个类的实体。
(2)程序设计:
李氏兄妹填写参赛报名表。
(3)编译:
李氏兄妹的参赛报名表被上交给组委会(编译器),哥哥和妹妹分别参加男子和女子的比赛,组委会一看就明白了(早绑定),只是发言人选不明确,组委会看到报 名表上写的是“李家代表”(基类指针),组委会不能确定到底是谁,就做了个备注:如果是男的,就是哥哥李某某;如果是女的,就是妹妹李某某(晚绑定)。组 委会做好其它准备工作后,就等运动会开始了(编译完毕)。
(4)程序运行:
运动会开始了(程序开始运行),开幕式上我们听到了李家妹妹的发言,如果是哥哥运气好抓阄胜出,我们将听到哥哥的发言(多态)。然后就是看到兄妹俩参加比赛了。。。
但愿这个比喻说清楚了虚函数、多态、早绑定和晚绑定的概念和它们之间的关系。再说一下,早绑定指编译器在编译期间即知道对象的具体类型并确定此对象调用成员函数的确切地址;而晚绑定是根据指针所指对象的类型信息得到类的虚函数表指针进而确定调用成员函数的确切地址。
2、揭密晚绑定的秘密
编译器到底做了什么实现的虚函数的晚绑定呢?我们来探个究竟。
编译器对每个包含虚函数的类创建一个表(称为V TA B L E)。在V TA B L E中,编译器放置特定类的虚函数地址。在每个带有虚函数的类 中,编译器秘密地置一指针,称为v p o i n t e r(缩写为V P T R),指向这个对象的V TA B L E。通过基类指针做虚函数调 用时(也就是做多态调用时),编译器静态地插入取得这个V P T R,并在V TA B L E表中查找函数地址的代码,这样就能调用正确的函数使晚捆绑发生。为每个类设置V TA B L E、初始化V P T R、为虚函数调用插入代码,所有这些都是自动发生的,所以我们不必担心这些。利用虚函数, 这个对象的合适的函数就能被调用,哪怕在编译器还不知道这个对象的特定类型的情况下。(《C++编程思想》)
————这段话红色加粗部分似乎有点问题,我个人的理解看后面的总结。
在任何类中不存在显示的类型信息,可对象中必须存放类信息,否则类型不可能在运行时建立。那这个类信息是什么呢?我们来看下面几个类:
class no_virtual
{
public:
void fun1() const{}
int fun2() const { return a; }
private:
int a;
}
class one_virtual
{
public:
virtual void fun1() const{}
int fun2() const { return a; }
private:
int a;
}
class two_virtual
{
public:
virtual void fun1() const{}
virtual int fun2() const { return a; }
private:
int a;
}
以上三个类中:
no_virtual没有虚函数,sizeof(no_virtual)=4,类no_virtual的长度就是其成员变量整型a的长度;
one_virtual有一个虚函数,sizeof(one_virtual)=8;
two_virtual 有两个虚函数,sizeof(two_virtual)=8; 有一个虚函数和两个虚函数的类的长度没有区别,其实它们的长度就是no_virtual的 长度加一个void指针的长度,它反映出,如果有一个或多个虚函数,编译器在这个结构中插入一个指针( V P T R)。在one_virtual 和 two_virtual之间没有区别。这是因为V P T R指向一个存放地址的表,只需要一个指针,因为所有虚函数地址都包含在这个表中。
这个VPTR就可以看作类的类型信息。
那我们来看看编译器是怎么建立VPTR指向的这个虚函数表的。先看下面两个类:
class base
{
public:
void bfun(){}
virtual void vfun1(){}
virtual int vfun2(){}
private:
int a;
}
class derived : public base
{
public:
void dfun(){}
virtual void vfun1(){}
virtual int vfun3(){}
private:
int b;
}
两个类VPTR指向的虚函数表(VTABLE)分别如下:
base类
——————
VPTR——> |&base::vfun1 |
——————
|&base::vfun2 |
——————
derived类
———————
VPTR——> |&derived::vfun1 |
———————
|&base::vfun2 |
———————
|&derived::vfun3 |
———————
每当创建一个包含有虚函数的类或从包含有虚函数的类派生一个类时,编译器就为这个类创建一个VTABLE,如上图所示。在这个表中,编译器放置了在这个类 中或在它的基类中所有已声明为virtual的函数的地址。如果在这个派生类中没有对在基类中声明为virtual的函数进行重新定义,编译器就使用基类 的这个虚函数地址。(在derived的VTABLE中,vfun2的入口就是这种情况。)然后编译器在这个类中放置VPTR。当使用简单继承时,对于每 个对象只有一个VPTR。VPTR必须被初始化为指向相应的VTABLE,这在构造函数中发生。
一旦VPTR被初始化为指向相应的VTABLE,对象就"知道"它自己是什么类型。但只有当虚函数被调用时这种自我认知才有用。
个人总结如下:
1、从包含虚函数的类派生一个类时,编译器就为该类创建一个VTABLE。其每一个表项是该类的虚函数地址。
2、在定义该派生类对象时,先调用其基类的构造函数,然后再初始化VPTR,最后再调用派生类的构造函数( 从二进制的视野来看,所谓基类子类是一个大结构体,其中this指针开头的四个字节存放虚函数表头指针。执行子类的构造函数的时候,首先调用基类构造函数,this指针作为参数,在基类构造函数中填入基类的vptr,然后回到子类的构造函数,填入子类的vptr,覆盖基类填入的vptr。如此以来完成vptr的初始化。)
3、在实现动态绑定时,不能直接采用类对象,而一定要采用指针或者引用。因为采用类对象传值方式,有临时基类对象的产生,而采用指针,则是通过指针来访问外部的派生类对象的VPTR来达到访问派生类虚函数的结果。
VPTR 常常位于对象的开头,编译器能很容易地取到VPTR的值,从而确定VTABLE的位置。VPTR总指向VTABLE的开始地址,所有基类和它的子类的虚函 数地址(子类自己定义的虚函数除外)在VTABLE中存储的位置总是相同的,如上面base类和derived类的VTABLE中vfun1和vfun2 的地址总是按相同的顺序存储。编译器知道vfun1位于VPTR处,vfun2位于VPTR+1处,因此在用基类指针调用虚函数时,编译器首先获取指针指 向对象的类型信息(VPTR),然后就去调用虚函数。如一个base类指针pBase指向了一个derived对象,那pBase->vfun2 ()被编译器翻译为 VPTR+1 的调用,因为虚函数vfun2的地址在VTABLE中位于索引为1的位置上。同理,pBase->vfun3 ()被编译器翻译为 VPTR+2的调用。这就是所谓的晚绑定。
我们来看一下虚函数调用的汇编代码,以加深理解。
void test(base* pBase)
{
pBase->vfun2();
}
int main(int argc, char* argv[])
{
derived td;
test(&td);
return 0;
}
derived td;编译生成的汇编代码如下:
mov DWORD PTR _td$[esp+24], OFFSET FLAT:??_7derived@@6B@ ; derived::`vftable'
由编译器的注释可知,此时PTR _td$[esp+24]中存储的就是derived类的VTABLE地址。
test(&td);编译生成的汇编代码如下:
lea eax, DWORD PTR _td$[esp+24]
mov DWORD PTR __$EHRec$[esp+32], 0
push eax
call ?test@@YAXPAVbase@@@Z ; test
调用test函数时完成了如下工作:取对象td的地址,将其压栈,然后调用test。
pBase->vfun2();编译生成的汇编代码如下:
mov ecx, DWORD PTR _pBase$[esp-4]
mov eax, DWORD PTR [ecx]
jmp DWORD PTR [eax+4]
首先从栈中取出pBase指针指向的对象地址赋给ecx,然后取对象开头的指针变量中的地址赋给eax,此时eax的值即为VPTR的值,也就是 VTABLE的地址。最后就是调用虚函数了,由于vfun2位于VTABLE的第二个位置,相当于 VPTR+1,每个函数指针是4个字节长,所以最后的 调用被编译器翻译为 jmp DWORD PTR [eax+4]。如果是调用pBase->vfun1(),这句就该被编译为 jmp DWORD PTR [eax]。
现在应该对多态、虚函数、晚绑定有比较清楚的了解了吧。
转贴:http://blog.csdn.net/shenmea00000/archive/2007/10/31/1859762.aspx
如果看了上面的你还是觉得一头雾水,那么下面大牛的解说定会让你豁然开朗,有图有真相哦!
C++ 虚函数表解析
陈皓
前言
C++中的虚函数的作用主要是实现了多态的机制。关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数。这种技术可以让父类的指针有“多种形态”,这是一种泛型技术。所谓泛型技术,说白了就是试图使用不变的代码来实现可变的算法。比如:模板技术,RTTI技术,虚函数技术,要么是试图做到在编译时决议,要么试图做到运行时决议。
关于虚函数的使用方法,我在这里不做过多的阐述。大家可以看看相关的C++的书籍。在这篇文章中,我只想从虚函数的实现机制上面为大家一个清晰的剖析。
当然,相同的文章在网上也出现过一些了,但我总感觉这些文章不是很容易阅读,大段大段的代码,没有图片,没有详细的说明,没有比较,没有举一反三。不利于学习和阅读,所以这是我想写下这篇文章的原因。也希望大家多给我提意见。
言归正传,让我们一起进入虚函数的世界。
虚函数表
对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。简称为V-Table。在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其容真实反应实际的函数。这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数。
这里我们着重看一下这张虚函数表。C++的编译器应该是保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证取到虚函数表的有最高的性能——如果有多层继承或是多重继承的情况下)。这意味着我们通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。
听我扯了那么多,我可以感觉出来你现在可能比以前更加晕头转向了。没关系,下面就是实际的例子,相信聪明的你一看就明白了。
假设我们有这样的一个类:
class Base {
public:
virtual void f() { cout << "Base::f" << endl; }
virtual void g() { cout << "Base::g" << endl; }
virtual void h() { cout << "Base::h" << endl; }
};
按照上面的说法,我们可以通过Base的实例来得到虚函数表。下面是实际例程:
typedef void(*Fun)(void);
Base b;
Fun pFun = NULL;
cout << "虚函数表地址:" << (int*)(&b) << endl;
cout << "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b) << endl;
// Invoke the first virtual function
pFun = (Fun)*((int*)*(int*)(&b));
pFun();
实际运行经果如下:(Windows XP+VS2003, Linux 2.6.22 + GCC 4.1.3)
虚函数表地址:0012FED4
虚函数表 — 第一个函数地址:0044F148
Base::f
通过这个示例,我们可以看到,我们可以通过强行把&b转成int *,取得虚函数表的地址,然后,再次取址就可以得到第一个虚函数的地址了,也就是Base::f(),这在上面的程序中得到了验证(把int* 强制转成了函数指针)。通过这个示例,我们就可以知道如果要调用Base::g()和Base::h(),其代码如下:
(Fun)*((int*)*(int*)(&b)+0); // Base::f()
(Fun)*((int*)*(int*)(&b)+1); // Base::g()
(Fun)*((int*)*(int*)(&b)+2); // Base::h()
这个时候你应该懂了吧。什么?还是有点晕。也是,这样的代码看着太乱了。没问题,让我画个图解释一下。如下所示:
注意:在上面这个图中,我在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“/0”一样,其标志了虚函数表的结束。这个结束标志的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。
下面,我将分别说明“无覆盖”和“有覆盖”时的虚函数表的样子。没有覆盖父类的虚函数是毫无意义的。我之所以要讲述没有覆盖的情况,主要目的是为了给一个对比。在比较之下,我们可以更加清楚地知道其内部的具体实现。
一般继承(无虚函数覆盖)
下面,再让我们来看看继承时的虚函数表是什么样的。假设有如下所示的一个继承关系:
请注意,在这个继承关系中,子类没有重载任何父类的函数。那么,在派生类的实例中,其虚函数表如下所示:
对于实例:Derive d; 的虚函数表如下:
我们可以看到下面几点:
1)虚函数按照其声明顺序放于表中。
2)父类的虚函数在子类的虚函数前面。
我相信聪明的你一定可以参考前面的那个程序,来编写一段程序来验证。
一般继承(有虚函数覆盖)
覆盖父类的虚函数是很显然的事情,不然,虚函数就变得毫无意义。下面,我们来看一下,如果子类中有虚函数重载了父类的虚函数,会是一个什么样子?假设,我们有下面这样的一个继承关系。
为了让大家看到被继承过后的效果,在这个类的设计中,我只覆盖了父类的一个函数:f()。那么,对于派生类的实例,其虚函数表会是下面的一个样子:
我们从表中可以看到下面几点,
1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。
2)没有被覆盖的函数依旧。
这样,我们就可以看到对于下面这样的程序,
Base *b = new Derive();
b->f();
由b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,于是在实际调用发生时,是Derive::f()被调用了。这就实现了多态。
多重继承(无虚函数覆盖)
下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系。注意:子类并没有覆盖父类的函数。
对于子类实例中的虚函数表,是下面这个样子:
我们可以看到:
1) 每个父类都有自己的虚表。
2) 子类的成员函数被放到了第一个父类的表中。(所谓的第一个父类是按照声明顺序来判断的)
这样做就是为了解决不同的父类类型的指针指向同一个子类实例,而能够调用到实际的函数。
多重继承(有虚函数覆盖)
下面我们再来看看,如果发生虚函数覆盖的情况。
下图中,我们在子类中覆盖了父类的f()函数。
下面是对于子类实例中的虚函数表的图:
我们可以看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。这样,我们就可以任一静态类型的父类来指向子类,并调用子类的f()了。如:
Derive d;
Base1 *b1 = &d;
Base2 *b2 = &d;
Base3 *b3 = &d;
b1->f(); //Derive::f()
b2->f(); //Derive::f()
b3->f(); //Derive::f()
b1->g(); //Base1::g()
b2->g(); //Base2::g()
b3->g(); //Base3::g()
安全性
每次写C++的文章,总免不了要批判一下C++。这篇文章也不例外。通过上面的讲述,相信我们对虚函数表有一个比较细致的了解了。水可载舟,亦可覆舟。下面,让我们来看看我们可以用虚函数表来干点什么坏事吧。
一、通过父类型的指针访问子类自己的虚函数
我们知道,子类没有重载父类的虚函数是一件毫无意义的事情。因为多态也是要基于函数重载的。虽然在上面的图中我们可以看到Base1的虚表中有Derive的虚函数,但我们根本不可能使用下面的语句来调用子类的自有虚函数:
Base1 *b1 = new Derive();
b1->f1(); //编译出错
任何妄图使用父类指针想调用子类中的未覆盖父类的成员函数的行为都会被编译器视为非法,所以,这样的程序根本无法编译通过。但在运行时,我们可以通过指针的方式访问虚函数表来达到违反C++语义的行为。(关于这方面的尝试,通过阅读后面附录的代码,相信你可以做到这一点)
二、访问non-public的虚函数
另外,如果父类的虚函数是private或是protected的,但这些非public的虚函数同样会存在于虚函数表中,所以,我们同样可以使用访问虚函数表的方式来访问这些non-public的虚函数,这是很容易做到的。
如:
class Base {
private:
virtual void f() { cout << "Base::f" << endl; }
};
class Derive : public Base{
};
typedef void(*Fun)(void);
void main() {
Derive d;
Fun pFun = (Fun)*((int*)*(int*)(&d)+0);
pFun();
}
结束语
C++这门语言是一门Magic的语言,对于程序员来说,我们似乎永远摸不清楚这门语言背着我们在干了什么。需要熟悉这门语言,我们就必需要了解C++里面的那些东西,需要去了解C++中那些危险的东西。不然,这是一种搬起石头砸自己脚的编程语言。
在文章束之前还是介绍一下自己吧。我从事软件研发有十个年头了,目前是软件开发技术主管,技术方面,主攻Unix/C/C++,比较喜欢网络上的技术,比如分布式计算,网格计算,P2P,Ajax等一切和互联网相关的东西。管理方面比较擅长于团队建设,技术趋势分析,项目管理。欢迎大家和我交流,我的MSN和Email是:haoel@hotmail.com
附录一:VC中查看虚函数表
我们可以在VC的IDE环境中的Debug状态下展开类的实例就可以看到虚函数表了(并不是很完整的)
附录 二:例程
下面是一个关于多重继承的虚函数表访问的例程:
#include <iostream>
using namespace std;
class Base1 {
public:
virtual void f() { cout << "Base1::f" << endl; }
virtual void g() { cout << "Base1::g" << endl; }
virtual void h() { cout << "Base1::h" << endl; }
};
class Base2 {
public:
virtual void f() { cout << "Base2::f" << endl; }
virtual void g() { cout << "Base2::g" << endl; }
virtual void h() { cout << "Base2::h" << endl; }
};
class Base3 {
public:
virtual void f() { cout << "Base3::f" << endl; }
virtual void g() { cout << "Base3::g" << endl; }
virtual void h() { cout << "Base3::h" << endl; }
};
class Derive : public Base1, public Base2, public Base3 {
public:
virtual void f() { cout << "Derive::f" << endl; }
virtual void g1() { cout << "Derive::g1" << endl; }
};
typedef void(*Fun)(void);
int main()
{
Fun pFun = NULL;
Derive d;
int** pVtab = (int**)&d;
//Base1's vtable
//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+0);
pFun = (Fun)pVtab[0][0];
pFun();
//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+1);
pFun = (Fun)pVtab[0][1];
pFun();
//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+2);
pFun = (Fun)pVtab[0][2];
pFun();
//Derive's vtable
//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+3);
pFun = (Fun)pVtab[0][3];
pFun();
//The tail of the vtable
pFun = (Fun)pVtab[0][4];
cout<<pFun<<endl;
//Base2's vtable
//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);
pFun = (Fun)pVtab[1][0];
pFun();
//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);
pFun = (Fun)pVtab[1][1];
pFun();
pFun = (Fun)pVtab[1][2];
pFun();
//The tail of the vtable
pFun = (Fun)pVtab[1][3];
cout<<pFun<<endl;
//Base3's vtable
//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);
pFun = (Fun)pVtab[2][0];
pFun();
//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);
pFun = (Fun)pVtab[2][1];
pFun();
pFun = (Fun)pVtab[2][2];
pFun();
//The tail of the vtable
pFun = (Fun)pVtab[2][3];
cout<<pFun<<endl;
return 0;
}
来源:CSDN
作者:usernamecontroled
链接:https://blog.csdn.net/usernamecontroled/article/details/8001746