之前看网上都是清一色pika包的例子,就用的pika包,最大问题是非多线程安全,改为使用rabbitpy。大幅改善了pika多线程需要加锁,和外网推送延迟又不能开多线程导致推送慢的问题。
rabbitpy有个适配器,可以把rabbitpy包的channel适配成与pika包的channel的相同公有方法,减少了难度。
高层次封装,使用参数来控制使用什么包来操作rabbitmq。
# -*- coding: utf-8 -*- # @Author : ydf from collections import Callable import time from threading import Lock import rabbitpy from pika import BasicProperties # noinspection PyUnresolvedReferences from rabbitpy.message import Properties import pika from pika.adapters.blocking_connection import BlockingChannel from app.utils_ydf import LogManager from app.utils_ydf.mixins import LoggerMixin from app.utils_ydf import decorators from app.utils_ydf import BoundedThreadPoolExecutor from app import config as app_config LogManager('pika.heartbeat').get_logger_and_add_handlers(1) LogManager('rabbitpy').get_logger_and_add_handlers(2) LogManager('rabbitpy.base').get_logger_and_add_handlers(2) class RabbitmqClientRabbitPy: """ 使用rabbitpy包。 """ # noinspection PyUnusedLocal def __init__(self, username, password, host, port, virtual_host, heartbeat=60): rabbit_url = f'amqp://{username}:{password}@{host}:{port}/{virtual_host}' self.connection = rabbitpy.Connection(rabbit_url) def creat_a_channel(self) -> rabbitpy.AMQP: return rabbitpy.AMQP(self.connection.channel()) # 使用适配器,使rabbitpy包的公有方法几乎接近pika包的channel的方法。 class RabbitmqClientPika: """ 使用pika包,多线程不安全的包。 """ def __init__(self, username, password, host, port, virtual_host, heartbeat=60): credentials = pika.PlainCredentials(username, password) self.connection = pika.BlockingConnection(pika.ConnectionParameters( host, port, virtual_host, credentials, heartbeat=heartbeat)) def creat_a_channel(self) -> BlockingChannel: return self.connection.channel() class RabbitMqFactory: def __init__(self, username=app_config.RABBITMQ_USER, password=app_config.RABBITMQ_PASS, host=app_config.RABBITMQ_HOST, port=app_config.RABBITMQ_PORT, virtual_host=app_config.RABBITMQ_VIRTUAL_HOST, heartbeat=60, is_use_rabbitpy=1): """ :param username: :param password: :param port: :param virtual_host: :param heartbeat: :param is_use_rabbitpy: 为0使用pika,多线程不安全。为1使用rabbitpy,多线程安全的包。 """ if is_use_rabbitpy: self.rabbit_client = RabbitmqClientRabbitPy(username, password, host, port, virtual_host, heartbeat) else: self.rabbit_client = RabbitmqClientPika(username, password, host, port, virtual_host, heartbeat) def get_rabbit_cleint(self): return self.rabbit_client class RabbitmqPublisher(LoggerMixin): def __init__(self, queue_name, is_use_rabbitpy=1, log_level_int=10): """ :param queue_name: :param is_use_rabbitpy: 是否使用rabbitpy包。不推荐使用pika。 :param log_level_int: """ self._queue_name = queue_name self._is_use_rabbitpy = is_use_rabbitpy self.logger.setLevel(log_level_int) self.rabbit_client = RabbitMqFactory(is_use_rabbitpy=is_use_rabbitpy).get_rabbit_cleint() self.channel = self.rabbit_client.creat_a_channel() self.queue = self.channel.queue_declare(queue=queue_name, durable=True) self._lock_for_pika = Lock() self._lock_for_count = Lock() self._current_time = None self.count_per_minute = None self._init_count() self.logger.info(f'{self.__class__} 被实例化了') def _init_count(self): with self._lock_for_count: self._current_time = time.time() self.count_per_minute = 0 def publish(self, msg: str): if self._is_use_rabbitpy: self._publish_rabbitpy(msg) else: self._publish_pika(msg) self.logger.debug(f'向{self._queue_name} 队列,推送消息 {msg}') with self._lock_for_count: self.count_per_minute += 1 if time.time() - self._current_time > 60: self._init_count() self.logger.info(f'一分钟内推送了 {self.count_per_minute} 条消息到 {self.channel.connection} 中') @decorators.tomorrow_threads(100) def _publish_rabbitpy(self, msg: str): # noinspection PyTypeChecker self.channel.basic_publish( exchange='', routing_key=self._queue_name, body=msg, properties={'delivery_mode': 2}, ) def _publish_pika(self, msg: str): with self._lock_for_pika: # 亲测pika多线程publish会出错。 self.channel.basic_publish(exchange='', routing_key=self._queue_name, body=msg, properties=BasicProperties( delivery_mode=2, # make message persistent ) ) def clear(self): self.channel.queue_purge(self._queue_name) def get_message_count(self): if self._is_use_rabbitpy: return self._get_message_count_rabbitpy() else: return self._get_message_count_pika() def _get_message_count_pika(self): queue = self.channel.queue_declare(queue=self._queue_name, durable=True) return queue.method.message_count def _get_message_count_rabbitpy(self): ch = self.rabbit_client.connection.channel() q = rabbitpy.amqp_queue.Queue(ch, self._queue_name) q.durable = True msg_count = q.declare(passive=True)[0] ch.close() return msg_count class RabbitmqConsumer(LoggerMixin): def __init__(self, queue_name, consuming_function: Callable = None, threads_num=100, max_retry_times=3, log_level=10, is_print_detail_exception=True, is_use_rabbitpy=1): """ :param queue_name: :param consuming_function: 处理消息的函数,函数有且只能有一个参数,参数表示消息。是为了简单,放弃策略和模板来强制参数。 :param threads_num: :param max_retry_times: :param log_level: :param is_print_detail_exception: :param is_use_rabbitpy: 是否使用rabbitpy包。不推荐使用pika. """ self._queue_name = queue_name self.consuming_function = consuming_function self._threads_num = threads_num self.threadpool = BoundedThreadPoolExecutor(threads_num) self._max_retry_times = max_retry_times self.logger.setLevel(log_level) self.logger.info(f'{self.__class__} 被实例化') self._is_print_detail_exception = is_print_detail_exception self._is_use_rabbitpy = is_use_rabbitpy def start_consuming_message(self): if self._is_use_rabbitpy: self.start_consuming_message_rabbitpy() else: self.start_consuming_message_pika() @decorators.keep_circulating(1) # 是为了保证无论rabbitmq异常中断多久,无需重启程序就能保证恢复后,程序正常。 def start_consuming_message_rabbitpy(self): # noinspection PyArgumentEqualDefault channel = RabbitMqFactory(is_use_rabbitpy=1).get_rabbit_cleint().creat_a_channel() # type: rabbitpy.AMQP # 此处先固定使用pika. channel.queue_declare(queue=self._queue_name, durable=True) channel.basic_qos(prefetch_count=self._threads_num) for message in channel.basic_consume(self._queue_name): body = message.body.decode() self.logger.debug(f'从rabbitmq取出的消息是: {body}') self.threadpool.submit(self.__consuming_function_rabbitpy, message) def __consuming_function_rabbitpy(self, message, current_retry_times=0): if current_retry_times < self._max_retry_times: # noinspection PyBroadException try: self.consuming_function(message.body.decode()) message.ack() except Exception as e: self.logger.error(f'函数 {self.consuming_function} 第{current_retry_times+1}次发生错误,\n 原因是{e}', exc_info=self._is_print_detail_exception) self.__consuming_function_rabbitpy(message, current_retry_times + 1) else: self.logger.critical(f'达到最大重试次数 {self._max_retry_times} 后,仍然失败') # 错得超过指定的次数了,就确认消费了。 message.ack() @decorators.keep_circulating(1) # 是为了保证无论rabbitmq异常中断多久,无需重启程序就能保证恢复后,程序正常。 def start_consuming_message_pika(self): channel = RabbitMqFactory(is_use_rabbitpy=0).get_rabbit_cleint().creat_a_channel() # 此处先固定使用pika. channel.queue_declare(queue=self._queue_name, durable=True) channel.basic_qos(prefetch_count=self._threads_num) def callback(ch, method, properties, body): body = body.decode() self.logger.debug(f'从rabbitmq取出的消息是: {body}') self.threadpool.submit(self.__consuming_function_pika, ch, method, properties, body) channel.basic_consume(callback, queue=self._queue_name, # no_ack=True ) channel.start_consuming() @staticmethod def ack_message_pika(channelx, delivery_tagx): """Note that `channel` must be the same pika channel instance via which the message being ACKed was retrieved (AMQP protocol constraint). """ if channelx.is_open: channelx.basic_ack(delivery_tagx) else: # Channel is already closed, so we can't ACK this message; # log and/or do something that makes sense for your app in this case. pass def __consuming_function_pika(self, ch, method, properties, body, current_retry_times=0): if current_retry_times < self._max_retry_times: # noinspection PyBroadException try: self.consuming_function(body) ch.basic_ack(delivery_tag=method.delivery_tag) # self.rabbitmq_helper.connection.add_callback_threadsafe(functools.partial(self.ack_message, ch, method.delivery_tag)) except Exception as e: self.logger.error(f'函数 {self.consuming_function} 第{current_retry_times+1}次发生错误,\n 原因是{e}', exc_info=self._is_print_detail_exception) self.__consuming_function_pika(ch, method, properties, body, current_retry_times + 1) else: self.logger.critical(f'达到最大重试次数 {self._max_retry_times} 后,仍然失败') # 错得超过指定的次数了,就确认消费了。 ch.basic_ack(delivery_tag=method.delivery_tag) # self.rabbitmq_helper.connection.add_callback_threadsafe(functools.partial(self.ack_message, ch, method.delivery_tag)) if __name__ == '__main__': with decorators.TimerContextManager(): # noinspection PyArgumentEqualDefault rabbitmq_publisher = RabbitmqPublisher('queue_test', is_use_rabbitpy=1) # print(rabbitmq_publisher.get_message_count()) # def pub(msg): # # print(msg) # rabbitmq_publisher.publish(msg) # # # [pub(str(i)) for i in range(200000)] # time.sleep(10) # def f(body): # print('.... ', body) # time.sleep(10) # 模拟做某事需要阻塞10秒种,必须用并发。 # # # rabbitmq_consumer = RabbitmqConsumer('queue_test', consuming_function=f, threads_num=200, is_use_rabbitpy=0) # rabbitmq_consumer.start_consuming_message()
反对极端面向过程编程思维方式,喜欢面向对象和设计模式的解读,喜欢对比极端面向过程编程和oop编程消耗代码代码行数的区别和原因。致力于使用oop和36种设计模式写出最高可复用的框架级代码和使用最少的代码行数完成任务,致力于使用oop和设计模式来使部分代码减少90%行,使绝大部分py文件最低减少50%-80%行的写法。