OpenCV Template Matching example in Android

丶灬走出姿态 提交于 2019-11-26 18:29:06

I was facing the same problem you did. No source in Java available. Some search in the JavaDoc and some hints for const values later, I wrote this, which is almost the sample code above written in Java:

package opencv;

import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.Highgui;
import org.opencv.imgproc.Imgproc;

class MatchingDemo {
    public void run(String inFile, String templateFile, String outFile, int match_method) {
        System.out.println("\nRunning Template Matching");

        Mat img = Highgui.imread(inFile);
        Mat templ = Highgui.imread(templateFile);

        // / Create the result matrix
        int result_cols = img.cols() - templ.cols() + 1;
        int result_rows = img.rows() - templ.rows() + 1;
        Mat result = new Mat(result_rows, result_cols, CvType.CV_32FC1);

        // / Do the Matching and Normalize
        Imgproc.matchTemplate(img, templ, result, match_method);
        Core.normalize(result, result, 0, 1, Core.NORM_MINMAX, -1, new Mat());

        // / Localizing the best match with minMaxLoc
        MinMaxLocResult mmr = Core.minMaxLoc(result);

        Point matchLoc;
        if (match_method == Imgproc.TM_SQDIFF || match_method == Imgproc.TM_SQDIFF_NORMED) {
            matchLoc = mmr.minLoc;
        } else {
            matchLoc = mmr.maxLoc;
        }

        // / Show me what you got
        Core.rectangle(img, matchLoc, new Point(matchLoc.x + templ.cols(),
                matchLoc.y + templ.rows()), new Scalar(0, 255, 0));

        // Save the visualized detection.
        System.out.println("Writing "+ outFile);
        Highgui.imwrite(outFile, img);

    }
}

public class TemplateMatching {
    public static void main(String[] args) {
        System.loadLibrary("opencv_java246");
        new MatchingDemo().run(args[0], args[1], args[2], Imgproc.TM_CCOEFF);
    }
}

Now, run the program with the following options: lena.png template.png templatematch.png and you should receive the same result I did. Make sure the files are accessible by your runtime and, of course, opencv 2.4.6 library is registered to your classpath.

If you want to use OpenCV 3 and more you should use this code

because there is no Highgui in OpenCV 3 and you should use imgcodecs instead.

import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;

class MatchingDemo {
    public void run(String inFile, String templateFile, String outFile,
        int match_method) {
    System.out.println("\nRunning Template Matching");

    Mat img = Imgcodecs.imread(inFile);
    Mat templ = Imgcodecs.imread(templateFile);

    // / Create the result matrix
    int result_cols = img.cols() - templ.cols() + 1;
    int result_rows = img.rows() - templ.rows() + 1;
    Mat result = new Mat(result_rows, result_cols, CvType.CV_32FC1);

    // / Do the Matching and Normalize
    Imgproc.matchTemplate(img, templ, result, match_method);
    Core.normalize(result, result, 0, 1, Core.NORM_MINMAX, -1, new Mat());

    // / Localizing the best match with minMaxLoc
    MinMaxLocResult mmr = Core.minMaxLoc(result);

    Point matchLoc;
    if (match_method == Imgproc.TM_SQDIFF
            || match_method == Imgproc.TM_SQDIFF_NORMED) {
        matchLoc = mmr.minLoc;
    } else {
        matchLoc = mmr.maxLoc;
    }

    // / Show me what you got
    Imgproc.rectangle(img, matchLoc, new Point(matchLoc.x + templ.cols(),
            matchLoc.y + templ.rows()), new Scalar(0, 255, 0));

    // Save the visualized detection.
    System.out.println("Writing " + outFile);
    Imgcodecs.imwrite(outFile, img);

}
}

public class TemplateMatching {

public static void main(String[] args) {
    System.loadLibrary("opencv_java300");
    new MatchingDemo().run(args[0], args[1], args[2], Imgproc.TM_CCOEFF);
}

}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!