Fast bit shift of a byte array - CMAC subkeys

断了今生、忘了曾经 提交于 2019-12-03 13:13:37

When it comes for speed, known length, hard-coded version is the fastest (but ugly). If you need to shift more than one bit, ensure to update the code accordingly.

output[0] = (byte)((byte)(input[0] << 1) | (byte)((input[1] >> 7) & 1));
output[1] = (byte)((byte)(input[1] << 1) | (byte)((input[2] >> 7) & 1));
output[2] = (byte)((byte)(input[2] << 1) | (byte)((input[3] >> 7) & 1));
output[3] = (byte)((byte)(input[3] << 1) | (byte)((input[4] >> 7) & 1));
output[4] = (byte)((byte)(input[4] << 1) | (byte)((input[5] >> 7) & 1));
output[5] = (byte)((byte)(input[5] << 1) | (byte)((input[6] >> 7) & 1));
output[6] = (byte)((byte)(input[6] << 1) | (byte)((input[7] >> 7) & 1));
output[7] = (byte)((byte)(input[7] << 1) | (byte)((input[8] >> 7) & 1));
output[8] = (byte)((byte)(input[8] << 1) | (byte)((input[9] >> 7) & 1));
output[9] = (byte)((byte)(input[9] << 1) | (byte)((input[10] >> 7) & 1));
output[10] = (byte)((byte)(input[10] << 1) | (byte)((input[11] >> 7) & 1));
output[11] = (byte)((byte)(input[11] << 1) | (byte)((input[12] >> 7) & 1));
output[12] = (byte)((byte)(input[12] << 1) | (byte)((input[13] >> 7) & 1));
output[13] = (byte)((byte)(input[13] << 1) | (byte)((input[14] >> 7) & 1));
output[14] = (byte)((byte)(input[14] << 1) | (byte)((input[15] >> 7) & 1));
output[15] = (byte)(input[15] << 1);

And use RAM byte array!

It might help to cache CMAC subkeys when signing repeatedly using the same key (i.e. the same DESFire EV1 session key). The subkeys are always the same for the given key.

I think David's answer could be even faster if it used two local variables to cache the values read twice from the same offset of the input array (from my observations on JCOP, the array access is quite expensive even for transient arrays).

EDIT: I can provide the following implementation which does 4 bit right shift using short (32-bit int variant for cards supporting it would be even faster):

short pom=0; // X000 to be stored next
short pom2; // loaded value
short pom3; // 0XXX to be stored next
short curOffset=PARAMS_TRACK2_OFFSET;
while(curOffset<16) {
    pom2=Util.getShort(mem_PARAMS, curOffset);
    pom3=(short)(pom2>>>4);
    curOffset=Util.setShort(mem_RAM, curOffset, (short)(pom|pom3));
    pom=(short)(pom2<<12);
}

Beware, this code assumes same offsets in source and destination.

You can unroll this loop and use constant parameters if desired.

This is the fastest algorithm to rotate arbitrary number of bits I could come up with (I rotate array of 8 bytes, you can easily transform it to shifting 16 instead):

Use EEPROM to create a masking table for your shifts. Mask is just increasing amounts of 1s from the right:

final static byte[] ROTL_MASK = {
    (byte) 0x00, //shift 0: 00000000 //this one is never used, we don't do shift 0.
    (byte) 0x01, //shift 1: 00000001
    (byte) 0x03, //shift 2: 00000011
    (byte) 0x07, //shift 3: 00000111
    (byte) 0x0F, //shift 4: 00001111
    (byte) 0x1F, //shift 5: 00011111
    (byte) 0x3F, //shift 6: 00111111
    (byte) 0x7F  //shift 7: 01111111
};

Then you first use Util.arrayCopyNonAtomic for quick swap of bytes if shift is larger than 8:

final static byte BITS = 8;
//swap whole bytes:
Util.arrayCopyNonAtomic(in, (short) (shift/BITS), out, (short) 0, (short) (8-(shift/BITS)));
Util.arrayCopyNonAtomic(in, (short) 0, out, (short) (8-(shift/BITS)), (short) (shift/BITS));
shift %= BITS; //now we need to shift only up to 8 remaining bits

if (shift > 0) {
    //apply masks
    byte mask = ROTL_MASK[shift];
    byte comp = (byte) (8 - shift);

    //rotate using masks
    out[8] = in[0]; // out[8] is any auxiliary variable, careful with bounds!
    out[0] = (byte)((byte)(in[0] << shift) | (byte)((in[1] >> comp) & mask));
    out[1] = (byte)((byte)(in[1] << shift) | (byte)((in[2] >> comp) & mask));
    out[2] = (byte)((byte)(in[2] << shift) | (byte)((in[3] >> comp) & mask));
    out[3] = (byte)((byte)(in[3] << shift) | (byte)((in[4] >> comp) & mask));
    out[4] = (byte)((byte)(in[4] << shift) | (byte)((in[5] >> comp) & mask));
    out[5] = (byte)((byte)(in[5] << shift) | (byte)((in[6] >> comp) & mask));
    out[6] = (byte)((byte)(in[6] << shift) | (byte)((in[7] >> comp) & mask));
    out[7] = (byte)((byte)(in[7] << shift) | (byte)((in[8] >> comp) & mask));
}

You can additionally remove mask variable and use direct reference to the table instead.

Using this rather than naive implementation of bit-wise rotation proved to be about 450% - 500% faster.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!