链接:
https://vjudge.net/problem/POJ-2478
题意:
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
思路:
法雷级数的数的个数就是欧拉函数,欧拉函数打表前缀和即可。
代码:
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<math.h> #include<vector> using namespace std; typedef long long LL; const int INF = 1e9; const int MAXN = 1e6+10; LL phi[MAXN], prime[MAXN]; int tot, n; void Euler() { phi[1] = 1; for (LL i = 2;i < MAXN;i++) { if (!phi[i]) { phi[i] = i-1; prime[++tot] = i; } for (LL j = 1;j <= tot && 1LL*i*prime[j] < MAXN;j++) { if (i%prime[j]) phi[i*prime[j]] = phi[i]*(prime[j]-1); else { phi[i*prime[j]] = phi[i]*prime[j]; break; } } } } int main() { Euler(); for (int i = 3;i < MAXN;i++) phi[i] += phi[i-1]; while(~scanf("%d", &n) && n) { printf("%lld\n", phi[n]); } return 0; }