问题
In Spring batch I need to pass the items read by an ItemReader to two different processors and writer. What I'm trying to achieve is that...
+---> ItemProcessor#1 ---> ItemWriter#1 | ItemReader ---> item ---+ | +---> ItemProcessor#2 ---> ItemWriter#2
This is needed because items written by ItemWriter#1 should be processed in a completely different way compared to the ones written by ItemWriter#2. Moreover, ItemReader reads item from a database, and the queries it executes are so computational expensive that executing the same query twice should be discarded.
Any hint about how to achieve such set up ? Or, at least, a logically equivalent set up ?
回答1:
This solution is valid if your item should be processed by processor #1 and processor #2
You have to create a processor #0 with this signature:
class Processor0<Item, CompositeResultBean>
where CompositeResultBean
is a bean defined as
class CompositeResultBean {
Processor1ResultBean result1;
Processor2ResultBean result2;
}
In your Processor #0 just delegate work to processors #1 and #2 and put result in CompositeResultBean
CompositeResultBean Processor0.process(Item item) {
final CompositeResultBean r = new CompositeResultBean();
r.setResult1(processor1.process(item));
r.setResult2(processor2.process(item));
return r;
}
Your own writer is a CompositeItemWriter
that delegate to writer CompositeResultBean.result1
or CompositeResultBean.result2
(look at PropertyExtractingDelegatingItemWriter, maybe can help)
回答2:
I followed Luca's suggestion to use PropertyExtractingDelegatingItemWriter
as writer and I was able to work with two different entities in one single step.
First of all what I did was to define a DTO that stores the two entities/results from the processor
public class DatabaseEntry {
private AccessLogEntry accessLogEntry;
private BlockedIp blockedIp;
public AccessLogEntry getAccessLogEntry() {
return accessLogEntry;
}
public void setAccessLogEntry(AccessLogEntry accessLogEntry) {
this.accessLogEntry = accessLogEntry;
}
public BlockedIp getBlockedIp() {
return blockedIp;
}
public void setBlockedIp(BlockedIp blockedIp) {
this.blockedIp = blockedIp;
}
}
Then I passed this DTO to the writer, a PropertyExtractingDelegatingItemWriter
class where I define two customized methods to write the entities into the database, see my writer code below:
@Configuration
public class LogWriter extends LogAbstract {
@Autowired
private DataSource dataSource;
@Bean()
public PropertyExtractingDelegatingItemWriter<DatabaseEntry> itemWriterAccessLogEntry() {
PropertyExtractingDelegatingItemWriter<DatabaseEntry> propertyExtractingDelegatingItemWriter = new PropertyExtractingDelegatingItemWriter<DatabaseEntry>();
propertyExtractingDelegatingItemWriter.setFieldsUsedAsTargetMethodArguments(new String[]{"accessLogEntry", "blockedIp"});
propertyExtractingDelegatingItemWriter.setTargetObject(this);
propertyExtractingDelegatingItemWriter.setTargetMethod("saveTransaction");
return propertyExtractingDelegatingItemWriter;
}
public void saveTransaction(AccessLogEntry accessLogEntry, BlockedIp blockedIp) throws SQLException {
writeAccessLogTable(accessLogEntry);
if (blockedIp != null) {
writeBlockedIp(blockedIp);
}
}
private void writeBlockedIp(BlockedIp entry) throws SQLException {
PreparedStatement statement = dataSource.getConnection().prepareStatement("INSERT INTO blocked_ips (ip,threshold,startDate,endDate,comment) VALUES (?,?,?,?,?)");
statement.setString(1, entry.getIp());
statement.setInt(2, threshold);
statement.setTimestamp(3, Timestamp.valueOf(startDate));
statement.setTimestamp(4, Timestamp.valueOf(endDate));
statement.setString(5, entry.getComment());
statement.execute();
}
private void writeAccessLogTable(AccessLogEntry entry) throws SQLException {
PreparedStatement statement = dataSource.getConnection().prepareStatement("INSERT INTO log_entries (date,ip,request,status,userAgent) VALUES (?,?,?,?,?)");
statement.setTimestamp(1, Timestamp.valueOf(entry.getDate()));
statement.setString(2, entry.getIp());
statement.setString(3, entry.getRequest());
statement.setString(4, entry.getStatus());
statement.setString(5, entry.getUserAgent());
statement.execute();
}
}
With this approach you can get the wanted inital behaviour from a single reader for processing multiple entities and save them in a single step.
回答3:
You can use a CompositeItemProcessor
and CompositeItemWriter
It won't look exactly like your schema, it will be sequential, but it will do the job.
回答4:
this is the solution I came up with.
So, the idea is to code a new Writer that "contains" both an ItemProcessor and an ItemWriter. Just to give you an idea, we called it PreprocessoWriter, and that's the core code.
private ItemWriter<O> writer;
private ItemProcessor<I, O> processor;
@Override
public void write(List<? extends I> items) throws Exception {
List<O> toWrite = new ArrayList<O>();
for (I item : items) {
toWrite.add(processor.process(item));
}
writer.write(toWrite);
}
There's a lot of things being left aside. Management of ItemStream, for instance. But in our particular scenario this was enough.
So you can just combine multiple PreprocessorWriter with CompositeWriter.
回答5:
There is an other solution if you have a reasonable amount of items (like less than 1 Go) : you can cache the result of your select into a collection wrapped in a Spring bean.
Then u can just read the collection twice with no cost.
来源:https://stackoverflow.com/questions/18999724/spring-batch-one-reader-multiple-processors-and-writers