Python pandas datareader no longer works for yahoo-finance changed url

南楼画角 提交于 2019-12-03 04:04:40

I found the workaround by "fix-yahoo-finance" in https://pypi.python.org/pypi/fix-yahoo-finance useful, for example:

from pandas_datareader import data as pdr
import fix_yahoo_finance

data = pdr.get_data_yahoo('APPL', start='2017-04-23', end='2017-05-24')

Note the order of the last 2 data columns are 'Adj Close' and 'Volume' ie. not the previous format. To re-index:

cols = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close']
data.reindex(columns=cols)

So they've changed their url and now use cookies protection (and possibly javascript) so I fixed my own problem using dryscrape, which emulates a browser this is just an FYI as this surely now breaks their terms and conditions... so use at your own risk? I'm looking at Quandl for an alternative EOD price source.

I could not get anywhere with cookie browsing a CookieJar so I ended up using dryscrape to "fake" a user download

import dryscrape
from bs4 import BeautifulSoup
import time
import datetime
import re

#we visit the main page to initialise sessions and cookies
session = dryscrape.Session()
session.set_attribute('auto_load_images', False)
session.set_header('User-agent', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95     Safari/537.36')    

#call this once as it is slow(er) and then you can do multiple download, though there seems to be a limit after which you have to reinitialise...
session.visit("https://finance.yahoo.com/quote/AAPL/history?p=AAPL")
response = session.body()


#get the dowload link
soup = BeautifulSoup(response, 'lxml')
for taga in soup.findAll('a'):
    if taga.has_attr('download'):
        url_download = taga['href']
print(url_download)

#now replace the default end date end start date that yahoo provides
s = "2017-02-18"
period1 = '%.0f' % time.mktime(datetime.datetime.strptime(s, "%Y-%m-%d").timetuple())
e = "2017-05-18"
period2 = '%.0f' % time.mktime(datetime.datetime.strptime(e, "%Y-%m-%d").timetuple())

#now we replace the period download by our dates, please feel free to improve, I suck at regex
m = re.search('period1=(.+?)&', url_download)
if m:
    to_replace = m.group(m.lastindex)
    url_download = url_download.replace(to_replace, period1)        
m = re.search('period2=(.+?)&', url_download)
if m:
    to_replace = m.group(m.lastindex)
    url_download = url_download.replace(to_replace, period2)

#and now viti and get body and you have your csv
session.visit(url_download)
csv_data = session.body()

#and finally if you want to get a dataframe from it
import sys
if sys.version_info[0] < 3: 
    from StringIO import StringIO
else:
    from io import StringIO

import pandas as pd
df = pd.read_csv(StringIO(csv_data), index_col=[0], parse_dates=True)
df

I changed from Yahoo to Google Finance and it works for me, so from

data.DataReader(ticker, 'yahoo', start_date, end_date)

to

data.DataReader(ticker, 'google', start_date, end_date)

and adapted my "old" Yahoo! symbols from:

tickers = ['AAPL','MSFT','GE','IBM','AA','DAL','UAL', 'PEP', 'KO']

to

tickers = ['NASDAQ:AAPL','NASDAQ:MSFT','NYSE:GE','NYSE:IBM','NYSE:AA','NYSE:DAL','NYSE:UAL', 'NYSE:PEP', 'NYSE:KO']

Try this out:

import fix_yahoo_finance as yf
data = yf.download('SPY', start = '2012-01-01', end='2017-01-01')

Make the thread sleep in between reading after each data. May work most of the time, so try 5-6 times and save the data in the csv file, so next time u can read from file.

### code is here ###
import pandas_datareader as web
import time
import datetime as dt
import pandas as pd

symbols = ['AAPL', 'MSFT', 'AABA', 'DB', 'GLD']
webData = pd.DataFrame()
for stockSymbol in symbols:
    webData[stockSymbol] = web.DataReader(stockSymbol, 
    data_source='yahoo',start= 
               startDate, end= endDate, retry_count= 10)['Adj Close']   
    time.sleep(22) # thread sleep for 22 seconds.

Yahoo finance works well with pandas. Use it like this:

import pandas as pd
import pandas_datareader as pdr
from pandas_datareader import data as wb

ticker='GOOGL'
start_date='2019-1-1'
data_source='yahoo'

ticker_data=wb.DataReader(ticker,data_source=data_source,start=start_date)
df=pd.DataFrame(ticker_data)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!