How to update element priorities in a heap for Prim's Algorithm?

有些话、适合烂在心里 提交于 2019-12-03 02:33:47

It is possible to build priority queues that support an operation called decrease-key, which takes the priority of an existing object in a priority queue and lowers it. Most versions of priority queues that ship with existing libraries don't support this operation, but it's possible to build it in several ways.

For example, given a binary heap, you can maintain an auxiliary data structure that maps from elements to their positions in the binary heap. You would then update the binary heap implementation so that whenever a swap is performed, this auxiliary data structure is updated. Then, to implement decrease-key, you could access the table, find the position of the node in the binary heap, then continue a bubble-up step.

Other pointer-based heaps like binomial heaps or Fibonacci heaps explicitly support this operation (the Fibonacci heap was specifically designed for it). You usually have an auxiliary map from objects to the node they occupy in the heap and can then rewire the pointers to move the node around in the heap.

Hope this helps!

Pointers enable efficient composite data structures

You have something like this (using pseudocode C++):

class Node
    bool visited
    double key
    Node* pi
    vector<pair<Node*, double>> adjacent //adjacent nodes and edge weights
    //and extra fields needed for PriorityQueue data structure
    // - a clean way to do this is to use CRTP for defining the base
    //   PriorityQueue node class, then inherit your graph node from that

class Graph
    vector<Node*> vertices

CRTP: http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

The priority queue Q in the algorithm contains items of type Node*, where ExtractMin gets you the Node* with minimum key.

The reason you don't have to do any linear search is because, when you get u = ExtractMin(Q), you have a Node*. So u->adjacent gets you both the v's in G.Adj[u] and the w(u,v)'s in const time per adjacent node. Since you have a pointer v to the priority queue node (which is v), you can update it's position in the priority queue in logarithmic time per adjacent node (with most implementations of a priority queue).

To name some specific data structures, the DecreaseKey(Q, v) function used below has logarithmic complexity for Fibonnaci heaps and pairing heaps (amortized).

More-concrete pseudocode for the algorithm

MstPrim(Graph* G)
    for each u in G->vertices
        u->visited = false
        u->key = infinity
        u->pi = NULL
    Q = PriorityQueue(G->vertices)
    while Q not empty
        u = ExtractMin(Q)
        u->visited = true
        for each (v, w) in u->adjacent
            if not v->visited and w < v->key
                v->pi = u
                v->key = w
                DecreasedKey(Q, v) //O(log n)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!