今天上课的实验我们做了MapReduce的相关实验,了解了下MapReduce的简单实验:具体内容为:统计id出现的次。
首先建立MapReduce的项目,运行相关的代码。(我用的是windows连接Linux下的Hadoop)
package mapreduce; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static void main(String[] args) throws IOException,ClassNotFoundException,InterruptedException{ Job job = Job.getInstance(); job.setJobName("WordCount"); job.setJarByClass(WordCount.class); job.setMapperClass(doMapper.class); job.setReducerClass(doReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); Path in = new Path("hdfs://192.168.43.18:9000/user/hadoop/data/mapreduce1/buyer_favorite1"); Path out = new Path("hdfs://192.168.43.18:9000/user/hadoop/data/mapreduce1/out"); FileInputFormat.addInputPath(job, in); FileOutputFormat.setOutputPath(job, out); System.exit(job.waitForCompletion(true) ? 0 : 1); } public static class doMapper extends Mapper<Object, Text, Text, IntWritable>{ public static final IntWritable one = new IntWritable(1); public static Text word = new Text(); @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer tokenizer = new StringTokenizer(value.toString(), "\t"); word.set(tokenizer.nextToken()); context.write(word, one); } } public static class doReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ private IntWritable result = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } result.set(sum); context.write(key, result); } } }
具体最初的文件为:
10181 1000481 2010-04-04 16:54:31 20001 1001597 2010-04-07 15:07:52 20001 1001560 2010-04-07 15:08:27 20042 1001368 2010-04-08 08:20:30 20067 1002061 2010-04-08 16:45:33 20056 1003289 2010-04-12 10:50:55 20056 1003290 2010-04-12 11:57:35 20056 1003292 2010-04-12 12:05:29 20054 1002420 2010-04-14 15:24:12 20055 1001679 2010-04-14 19:46:04 20054 1010675 2010-04-14 15:23:53 20054 1002429 2010-04-14 17:52:45 20076 1002427 2010-04-14 19:35:39 20054 1003326 2010-04-20 12:54:44 20056 1002420 2010-04-15 11:24:49 20064 1002422 2010-04-15 11:35:54 20056 1003066 2010-04-15 11:43:01 20056 1003055 2010-04-15 11:43:06 20056 1010183 2010-04-15 11:45:24 20056 1002422 2010-04-15 11:45:49 20056 1003100 2010-04-15 11:45:54 20056 1003094 2010-04-15 11:45:57 20056 1003064 2010-04-15 11:46:04 20056 1010178 2010-04-15 16:15:20 20076 1003101 2010-04-15 16:37:27 20076 1003103 2010-04-15 16:37:05 20076 1003100 2010-04-15 16:37:18 20076 1003066 2010-04-15 16:37:31 20054 1003103 2010-04-15 16:40:14 20054 1003100 2010-04-15 16:40:16
运行的结果为: