Is there a way to convert a self intersecting polygon to a multipolygon in JTS?

*爱你&永不变心* 提交于 2019-12-02 17:10:58

JTS seems to offer the behaviour I require, though I had to do a little legwork in my own code. The validate function I wrote breaks down a polygon/multipolygon into a collection of non self intersecting linestrings, and then uses the Polygonizer class to build polygons from the result. I have tested it on the following (limited) set of inputs, and it seems to behave the way I require:

    POLYGON((0 100, 100 100, 0 0, 100 0, 0 100))
    POLYGON((0 0, 0 100, 100 100, 100 0, 0 0))
    MULTIPOLYGON(((0 0, 0 100, 100 100, 100 0, 0 0)),((50 50, 50 150, 150 150, 150 50, 50 50)))
    POLYGON((0 0, 50 50, 100 0, 150 0, 200 50, 250 0, 0 0))

Code:

/**
 * Get / create a valid version of the geometry given. If the geometry is a polygon or multi polygon, self intersections /
 * inconsistencies are fixed. Otherwise the geometry is returned.
 * 
 * @param geom
 * @return a geometry 
 */
public static Geometry validate(Geometry geom){
    if(geom instanceof Polygon){
        if(geom.isValid()){
            geom.normalize(); // validate does not pick up rings in the wrong order - this will fix that
            return geom; // If the polygon is valid just return it
        }
        Polygonizer polygonizer = new Polygonizer();
        addPolygon((Polygon)geom, polygonizer);
        return toPolygonGeometry(polygonizer.getPolygons(), geom.getFactory());
    }else if(geom instanceof MultiPolygon){
        if(geom.isValid()){
            geom.normalize(); // validate does not pick up rings in the wrong order - this will fix that
            return geom; // If the multipolygon is valid just return it
        }
        Polygonizer polygonizer = new Polygonizer();
        for(int n = geom.getNumGeometries(); n-- > 0;){
            addPolygon((Polygon)geom.getGeometryN(n), polygonizer);
        }
        return toPolygonGeometry(polygonizer.getPolygons(), geom.getFactory());
    }else{
        return geom; // In my case, I only care about polygon / multipolygon geometries
    }
}

/**
 * Add all line strings from the polygon given to the polygonizer given
 * 
 * @param polygon polygon from which to extract line strings
 * @param polygonizer polygonizer
 */
static void addPolygon(Polygon polygon, Polygonizer polygonizer){
    addLineString(polygon.getExteriorRing(), polygonizer);
    for(int n = polygon.getNumInteriorRing(); n-- > 0;){
        addLineString(polygon.getInteriorRingN(n), polygonizer);
    }
}

/**
 * Add the linestring given to the polygonizer
 * 
 * @param linestring line string
 * @param polygonizer polygonizer
 */
static void addLineString(LineString lineString, Polygonizer polygonizer){

    if(lineString instanceof LinearRing){ // LinearRings are treated differently to line strings : we need a LineString NOT a LinearRing
        lineString = lineString.getFactory().createLineString(lineString.getCoordinateSequence());
    }

    // unioning the linestring with the point makes any self intersections explicit.
    Point point = lineString.getFactory().createPoint(lineString.getCoordinateN(0));
    Geometry toAdd = lineString.union(point); 

    //Add result to polygonizer
    polygonizer.add(toAdd);
}

/**
 * Get a geometry from a collection of polygons.
 * 
 * @param polygons collection
 * @param factory factory to generate MultiPolygon if required
 * @return null if there were no polygons, the polygon if there was only one, or a MultiPolygon containing all polygons otherwise
 */
static Geometry toPolygonGeometry(Collection<Polygon> polygons, GeometryFactory factory){
    switch(polygons.size()){
        case 0:
            return null; // No valid polygons!
        case 1:
            return polygons.iterator().next(); // single polygon - no need to wrap
        default:
            //polygons may still overlap! Need to sym difference them
            Iterator<Polygon> iter = polygons.iterator();
            Geometry ret = iter.next();
            while(iter.hasNext()){
                ret = ret.symDifference(iter.next());
            }
            return ret;
    }
}
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!