iOS ARM64 Syscalls

孤街醉人 提交于 2019-12-02 09:29:40

The registers used for syscalls are completely arbitrary, and the resources you've picked are certainly wrong for XNU.

As far as I'm aware, the XNU syscall ABI for arm64 is entirely private and subject to change without notice so there's no published standard that it follows, but you can scrape together how it works by getting a copy of the XNU source (as tarballs, or viewing it online if you prefer that), grep for the handle_svc function, and just following the code.
I'm not gonna go into detail on where exactly you find which bits, but the end result is:

  • The immediate passed to svc is ignored, but the standard library uses svc 0x80.
  • x16 holds the syscall number
  • x0 through x8 hold up to 9 arguments*
  • There are no arguments on the stack
  • x0 and x1 hold up to 2 return values (e.g. in the case of fork)
  • The carry bit is used to report an error, in which case x0 holds the error code

* This is used only in the case of an indirect syscall (x16 = 0) with 8 arguments.
* Comments in the XNU source also mention x9, but it seems the engineer who wrote that should brush up on off-by-one errors.

And then it comes to the actual syscall numbers available:

  • The canonical source for "UNIX syscalls" is the file bsd/kern/syscalls.master in the XNU source tree. Those take syscall numbers from 0 up to about 540 in the latest iOS 13 beta.
  • The canonical source for "Mach syscalls" is the file osfmk/kern/syscall_sw.c in the XNU source tree. Those syscalls are invoked with negative numbers between -10 and -100 (e.g. -28 would be task_self_trap).
  • Unrelated to the last point, two syscalls mach_absolute_time and mach_continuous_time can be invoked with syscall numbers -3 and -4 respectively.
  • A few low-level operations are available through platform_syscall with the syscall number 0x80000000.

This should get you going. As @Siguza mentioned you must use x16 , not x8 for the syscall number.

#import <sys/syscall.h>
char testStringGlobal[] = "helloWorld from global variable\n";
int main(int argc, char * argv[]) {
    char testStringOnStack[] = "helloWorld from stack variable\n";
#if TARGET_CPU_ARM64

    //VARIANT 1 suggested by @PeterCordes
    //an an input it's a file descriptor set to STD_OUT 1 so the syscall write output appears in Xcode debug output
    //as an output this will be used for returning syscall return value;
    register long x0 asm("x0") = 1;
    //as an input string to write
    //as an output this will be used for returning syscall return value higher half (in this particular case 0)
    register char *x1 asm("x1") = testStringOnStack;
    //string length
    register long x2 asm("x2") = strlen(testStringOnStack);
    //syscall write is 4
    register long x16 asm("x16") = SYS_write; //syscall write definition - see my footnote below

    //full variant using stack local variables for register x0,x1,x2,x16 input
    //syscall result collected in x0 & x1 using "semi" intrinsic assembler
    asm volatile(//all args prepared, make the syscall
                 "svc #0x80"
                 :"=r"(x0),"=r"(x1) //mark x0 & x1 as syscall outputs
                 :"r"(x0), "r"(x1), "r"(x2), "r"(x16): //mark the inputs
                 //inform the compiler we read the memory
                 "memory",
                 //inform the compiler we clobber carry flag (during the syscall itself)
                 "cc");

    //VARIANT 2
    //syscall write for globals variable using "semi" intrinsic assembler
    //args hardcoded
    //output of syscall is ignored
    asm volatile(//prepare x1 with the help of x8 register
                 "mov x1, %0 \t\n"
                 //set file descriptor to STD_OUT 1 so it appears in Xcode debug output
                 "mov x0, #1 \t\n"
                 //hardcoded length
                 "mov x2, #32 \t\n"
                 //syscall write is 4
                 "mov x16, #0x4 \t\n"
                 //all args prepared, make the syscall
                 "svc #0x80"
                 ::"r"(testStringGlobal):
                 //clobbered registers list
                 "x1","x0","x2","x16",
                 //inform the compiler we read the memory
                 "memory",
                 //inform the compiler we clobber carry flag (during the syscall itself)
                 "cc");

    //VARIANT 3 - only applicable to global variables using "page" address
    //which is  PC-relative addressing to load addresses at a fixed offset from the current location (PIC code).
    //syscall write for global variable using "semi" intrinsic assembler
    asm volatile(//set x1 on proper PAGE
                 "adrp x1,_testStringGlobal@PAGE \t\n" //notice the underscore preceding variable name by convention
                 //add the offset of the testStringGlobal variable
                 "add x1,x1,_testStringGlobal@PAGEOFF \t\n"
                 //set file descriptor to STD_OUT 1 so it appears in Xcode debug output
                 "mov x0, #1 \t\n"
                 //hardcoded length
                 "mov x2, #32 \t\n"
                 //syscall write is 4
                 "mov x16, #0x4 \t\n"
                 //all args prepared, make the syscall
                 "svc #0x80"
                 :::
                 //clobbered registers list
                 "x1","x0","x2","x16",
                 //inform the compiler we read the memory
                 "memory",
                 //inform the compiler we clobber carry flag (during the syscall itself)
                 "cc");
#endif
    @autoreleasepool {
        return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
    }
}

EDIT

To @PeterCordes excellent comment, yes there is a syscall numbers definition header <sys/syscall.h> which I included in the above snippet^ in Variant 1. But it's important to mention inside it's defined by Apple like this:

#ifdef __APPLE_API_PRIVATE
#define SYS_syscall        0
#define SYS_exit           1
#define SYS_fork           2
#define SYS_read           3
#define SYS_write          4

I haven't heard of a case yet of an iOS app AppStore rejection due to using a system call directly through svc 0x80 nonetheless it's definitely not public API.

As for the suggested "=@ccc" by @PeterCordes i.e. carry flag (set by syscall upon error) as an output constraint that's not supported as of latest XCode11 beta / LLVM 8.0.0 even for x86 and definitely not for ARM.

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!