组合数学一些结论
$C(n, m)=\frac{m !}{n !(m-n) !}$ $\left(C_{n}^{0}\right)^{2}+\left(C_{n}^{1}\right)^{2}+\left(C_{n}^{2}\right)^{2}+\cdots+\left(C_{n}^{n}\right)^{2}=C_{2 n}^{n}$ $(1+x)^{n}=\sum_{k=0}^{n}\left(\begin{array}{l}{n} \\ {k}\end{array}\right) x^{k}$ 斯特林公式: $n ! \approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$,即$lim_{n\rightarrow \infty}\frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}=1$ $Catalan$数: $C_{n+1}=\sum_{i=0}^{n} C_{i} \cdot C_{n-i}=C_{n-1} \cdot \frac{4 n-2}{n+1}$ $C_{n+1}=\left(\begin{array}{c}{2 n} \\ {n}\end{array}\right)-\left(\begin{array}{c}{2 n} \\ {n-1}\end{array}\right)$