破局自动驾驶落地难,数据标注行业变革是关键丨曼孚科技
随着过去几年自动驾驶“风口”兴起,越来越多的资本与研发力量投入到自动驾驶领域。 相关机构预测,半自动驾驶和全自动驾驶汽车未来几十年的市场潜力巨大。到2035年,仅中国就将有约860万辆自动驾驶汽车,其中约340万辆为全自动无人驾驶,520万辆为半自动驾驶。 不过,自动驾驶是一个相当复杂的工程系统,需要众多技术的融合与精度配合,且不可能依赖资本的力量在短时间内迅速爆发,自动驾驶商业化还面临方方面面的挑战。所以一直以来,自动驾驶给人的感觉都是“热度很高但距离很远”。 自动驾驶落地难的原因有很多,其中一个核心因素是自动驾驶感知系统的不完善。 在自动驾驶技术中,感知是最基础的部分,没有对车辆周围三维环境的定量感知,就犹如人没有了眼睛,无人驾驶的决策系统就无法正常工作。 为了安全与准确地感知,自动驾驶系统使用了多种传感器,其中可以被广义地划分为“视觉”的有超声波雷达、毫米波雷达、激光雷达,以及摄像头。 与其他应用场景相比,自动驾驶的应用场景相对复杂,尤其面对复杂多变的路况环境,感知技术的突破不能依赖算法或技术的革新来解决。 在这种情况下,经过人工标注的带有丰富语义信息的标注数据,可以使算法更好地理解和识别视觉摄像头、激光雷达、毫米波雷达等传感器所传输的画面信息和障碍物信息,全面提升自动驾驶汽车的感知能力。 自动驾驶标注场景(来源:曼孚科技) 不过,并不是所有的标注数据都能被自动驾驶汽车所用