shader入门精要读书笔记06 数学基础
第四章 数学基础 一、坐标系 笛卡尔坐标系,分为二维三维。 二维坐标系 OpenGL是左下角为0,DirectX是左上角。 三维坐标系,3个坐标轴也被称为基矢量,长度为1的基矢量叫做标准正交基,长度不唯1的叫正交基。 三维笛卡尔坐标系又分为左手坐标系与右手坐标系。 Unity使用的是左手坐标系,摄像头的观察空间是右手坐标系(摄像头前方为z轴的负方向)。 二、点和矢量 矢量:有方向有模,没有位置。 点:只是一个位置。 矢量的加减乘除运算,模运算。 单位矢量:被归一化的矢量。通过在矢量上方加个^来表示是矢量的模。 单位矢量的运算:通过矢量除以矢量的模来进行计算。 单位矢量计算通常使用在法线方向、光源方向等。 矢量的点积(内积/点乘): 点积就是可以确定两个矢量的方向关系。投影长度=标量。 点乘结果>0 :两个矢量方向关系为<90°。(=0 : 垂直,<0 : >90°) 求适量的模可以将矢量对其自身进行点乘,运算后开方。 a·b=|a||b|cos夹角 矢量的叉积(外积/叉乘): 叉积结果是矢量,不满足交换律,叉积的结果是得到一个同时垂直于这两个矢量的新矢量。 使用左手定则,右手定则来判断在不同坐标系中,新得到的矢量方向。 |a×b|=|a||b|sin夹角 我们可以通过点乘(cos值)来确定某两个矢量的夹角关系。 还可以通过叉乘判断一个面的正面反面(通过确定面上的三个点的顺时针