状态寄存器

Modbus 协议

♀尐吖头ヾ 提交于 2019-12-16 22:38:57
转载:https://www.cnblogs.com/DreamRecorder/p/9081127.html 一、Modbus 协议简介   Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。 此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。   当在一Modbus网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。在其它网络上,包含了Modbus协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。 1、在Modbus网络上转输   标准的Modbus口是使用一RS-232C兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。控制器能直接或经由Modem组网。   控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备

以太网自协商原理

陌路散爱 提交于 2019-12-16 00:43:15
自协商原理: 自协商是通过一种叫做快速连接脉冲(Fast Link Pulse)的信号实现的,简称FLP。自协商的双方通过FLP来交换数据。 在具备自协商能力的端口没有Link的情况下,端口一直发送FLP,在FLP中包含着自己的连接能力信息,包括支持的速率能力、双工能力、流控能力等。这个连接能力是从自协商能力寄存器中得到的(Auto-Negotiation Advertisement Register ,PHY标准寄存器地址4 )。FLP中的编码方式如图。依靠脉冲位置编码携带数据。一个FLP突发包含33个脉冲位置。17个奇数位置脉冲为时钟脉冲,时钟脉冲总是存在的;16个偶数位置脉冲用来表示数据:此位置有脉冲表示1,此位置没有脉冲表示0。这样1个FPL的突发就可以传输16bit的数据。自协商交互数据就这样通过物理线路被传输。 如果两端都支持自协商,则都会接收到对方的FLP,并且把FLP中的信息解码出来。得到对方的连接能力。并且把对端的自协商能力值记录在自协商对端能力寄存器中(Auto-Negotiation Link Partner Ability Register , PHY标准寄存器地址5 )。同时把状态寄存器(PHY标准寄存器地址1)的自协商完成bit(bit5)置成1。在自协商未完成的情况下,这个bit一直为0。然后各自根据自己和对方的最大连接能力,选择最好的连接方式Link

STM32 GPIO口的配置和应用

*爱你&永不变心* 提交于 2019-12-14 09:33:31
STM32F103ZET6 一共有7组IO口(有FT的标识是可以识别5v的) 每组IO口有16个IO 一共16*7=112个IO 4种输入模式: (1) GPIO_Mode_AIN 模拟输入 (2) GPIO_Mode_IN_FLOATING 浮空输入 (3) GPIO_Mode_IPD 下拉输入 (4) GPIO_Mode_IPU 上拉输入 4种输出模式: (5) GPIO_Mode_Out_OD 开漏输出 (6) GPIO_Mode_Out_PP 推挽输出 (7) GPIO_Mode_AF_OD 复用开漏输出 (8) GPIO_Mode_AF_PP 复用推挽输出 四种输入模式: 1、一图记住上拉、下拉、浮空输入模式: 原理分析:图中箭头表示信号流动方向。从I/O引脚向左沿着箭头方向,首先遇到两个开关和电阻,与VDD相连的称为上拉电阻,与Vss相连的称为下拉电阻,再连接到施密特触发器(信号转换)把电压信号转化为0、1的数字信号,存储在输入数据寄存器(IDR)。然后通过设置配置寄存器(CRL、CRH)控制这两个开关,于是就可以得到GPIO的上拉输入、下拉输入模式和浮空输入模式,浮空就是既不接上拉也不接下拉。在上拉/下拉/浮空输入模式中,输出缓冲器被禁止(P-MOS和N-MOS),施密特触发器输入被激活,根据输入配置(上拉,下拉或浮动)的不同,弱上拉和下拉电阻被连接

I2C接口开漏输出输入双向

十年热恋 提交于 2019-12-13 22:03:17
I2C接口 原创 朝辞暮见 发布于2018-06-13 19:45:25 阅读数 8265 收藏 展开 一、I2C总线协议内容 1. I2C总线引脚定义 SDA (I2C数据引脚) CLK (I2C数据引脚) 2. I2C 总线物理连接 I2C总线物理连接如下图所示,SDA和CLK连接线上连有两个上拉电阻,当总线空闲时,两根线均为高电平。连到总线上的任一器件输出的低电平,都将使总线的信号变低。 二、I2C总线的数据传送 1. 数据位的有效性规定 I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化 1 scl处于高电平的时候,如果sda处于低电平:传输数据0,sda处于高电平:传输数据1 2.在scl处于高电平的时候,sda用来传输数据,必须保持电平稳定 3.如果要产生数据即sda需要变化时,只能在scl处于低电平的时候 2. 起始和终止信号 SCL线为高电平期间,SDA线由高电平向低电平的变化表示起始信号;SCL线为高电平期间,SDA线由低电平向高电平的变化表示终止信号。 1. 信号的发起和终止,由主机发起,在起始信号产生后,总线就处于被占用的状态;在终止信号产生后,总线就处于空闲状态。 2. scl处于高电平的时候,sda由高->低的跳变, 表示发起传输,产生起始信号s, 如果低-

C语言中volatile关键字的使用

こ雲淡風輕ζ 提交于 2019-12-13 12:56:44
volatile是一个类型修饰符(type specifier),就像我们熟悉的const一样,它是被设计用来修饰被不同线程访问和修改的变量;volatile的作用是作为指令关键字,确保本条指令不会因编译器的优化而省略,且要求每次直接读值。 volatile的变量是说这变量可能会被意想不到地改变,这样,编译器就不会去假设这个变量的值了。 作用 编辑 简单地说就是防止编译器对代码进行优化。比如如下程序: 1XBYTE[2]=0x55; 2XBYTE[2]=0x56; 3XBYTE[2]=0x57; 4XBYTE[2]=0x58; 对外部硬件而言,上述四条语句分别表示不同的操作,会产生四种不同的动作,但是编译器却会对上述四条语句进行优化,认为只有XBYTE[2]=0x58(即忽略前三条语句,只产生一条机器代码)。如果键入volatile,则编译器会逐一地进行编译并产生相应的机器代码(产生四条代码)。 例子 编辑 精确地说就是,优化器在用到这个变量时必须每次都小心地重新读取这个变量的值,而不是使用保存在寄存器里的备份。下面是volatile变量的几个例子: 1)并行设备的硬件寄存器(如:状态寄存器) 2)一个中断服务子程序中会访问到的非自动变量(Non-automatic variables) 3)多线程应用中被几个任务共享的变量 这是区分C程序员和嵌入式系统程序员的最基本的问题

计算机组成原理常见题(六)

那年仲夏 提交于 2019-12-13 05:32:41
1.假定用若干个16Kx1位的存储器芯片组成一个64Kx8位的存储器,芯片内各单元连续编址,则地址BFF0H所在的芯片的最小地址是(C) A.40000H B.60000H C.8000H D.0000H 2.假设一个同步总线的工作频率为33MHZ,总线有32位数据线,每个总线时钟传输一次数据,则该总线的最大数据传输率为(B) A.66MB/s B.132MB/s C.528MB/s D.1056MB/s 3.假设某条指令的一个操作数采用一次间接寻址方式,指令中给出的地址码为1200H,地址1200H中的内容为12FCH,地址12FCH中的内容为38B8H,地址38B8H中的内容为88F9H,则该操作数为() A.1200H B.12FCH C.38B8F D.88F9H 4.相联存储器是按(B)进行寻址访问的寄存器 A.地址指定方式 B.内容指定方式 C.堆栈访问方式 D.队列访问方式 5.假定某程序p由一个100条指令构成的循环组成,该循环共执行50次,在某系统S中执行程序p花了20000个时钟周期,则系统S在执行程序p时CPI是多少? 在20000个时钟周期中共执行100x50=5000条指令,CPI=20000/5000=4 CPI:执行每一条指令所花的时钟周期数 CPI=执行指令所花的时钟周期数/执行了多少条指令 6.设某机主存容量为16MB,Cache容量为16KB

28335GPIO及外部中断配置介绍

ぐ巨炮叔叔 提交于 2019-12-13 03:20:06
本文转载连接: https://blog.csdn.net/E_ROAD_BY_U/article/details/53083151 弄了两周终于把28335的启动流程、寄存器及中断向量表的映射方法、内存的划分等有了一个全面的了解,今天看到久违的LED灯的闪烁,顿扫阴霾。特在此总结下28335GPIO及外部中断配置介绍。其实对于一个微控制器,只要能够独立实现这两个功能,也算是入门了。 一、GPIO口介绍 外界二进制信息(数字量)要被CPU处理,要给存储器存放,就需要外界信息源与两者之间的交换接口,这样的交换接口若用来进行通用目的数字量的输入输出,就被称为通用数字量输入/输出接口,简称GPIO。F28335 DSP有多达88个GPIO口,对应着芯片引出的88个引脚,随着芯片的封装与尺寸的确定,引脚数目是有限的,所以这88个引脚多数都是功能复用的,即可以灵活配置为输入引脚,也可以灵活配置为输出引脚,即可以作为通用I/O引脚,也可以作为特殊功能口(如SCI、SPI、ECAN等),非常灵活,用户根据需要,可以通过GPIO MUX(输入输出多路选择器,复用开关)寄存器来进行相关配置。 F28335DSP将这88个GPIO口分成了A、B、C三大组,A组包括GPIO0至GPIO31,B组包括GPIO32至GPIO63,C组包括GPIO64至GPIO87,每个引脚都复用了多个功能,同一时刻

CPU

不问归期 提交于 2019-12-12 10:36:07
CPU 1. CPU是什么? 2.CPU 实际做什么? 3.CPU 的内部结构 4.CPU 是寄存器的集合体 5.计算机语言 6.汇编语言 7.程序计数器 8.条件分支和循环机制 9.标志寄存器 10.函数调用机制 11.通过地址和索引实现数组 12.CPU 指令执行过程 13.总结 1. CPU是什么? CPU 的全称是 Central Processing Unit ,它是你的电脑中最硬核的组件,这种说法一点不为过。CPU 是能够让你的计算机叫计算机的核心组件,但是它却不能代表你的电脑,CPU 与计算机的关系就相当于大脑和人的关系。 它 是一种小型的计算机芯片 ,它嵌入在台式机、笔记本电脑或者平板电脑的主板上。通过在单个计算机芯片上放置数十亿个微型晶体管来构建 CPU。 这些晶体管使它能够执行运行存储在系统内存中的程序所需的计算,也就是说 CPU 决定了你电脑的计算能力。 2.CPU 实际做什么? CPU 的核心是从程序或应用程序获取指令并执行计算。 此过程可以分为三个关键阶段: 提取,解码和执行 。 CPU从系统的 RAM 中提取指令,然后解码该指令的实际内容,然后再由 CPU 的相关部分执行该指令。 RAM : 随机存取存储器 (英语:Random Access Memory,缩写:RAM),也叫主存,是与 CPU 直接交换数据的内部存储器。它可以 随时读写 (刷新时除外)

STM32开发 -- 低功耗模式详解

£可爱£侵袭症+ 提交于 2019-12-12 10:08:48
很多单片机都有低功耗模式,STM32 也不例外。当 CPU 不需继续运行时,可以利用多个低功耗模式来节省功耗。 这部分不是我负责,但是也是有必要看一下的。 参看: STM32F1开发指南-库函数版本_V3.2.pdf STM32中文参考手册_V10.pdf 一、低功耗模式 在系统或电源复位以后,微控制器处于运行状态。当CPU不需继续运行时,可以利用多种低功耗模式来节省功耗,例如等待某个外部事件时。用户需要根据最低电源消耗、最快速启动时间和可用的唤醒源等条件,选定一个最佳的低功耗模式。 STM32有三种低功耗模式: ● 睡眠模式 (Cortex™-M3内核停止,所有外设包括Cortex-M3核心的外设,如NVIC、系统时钟(SysTick)等仍在运行) ● 停止模式 (所有的时钟都已停止) ● 待机模式 (1.8V电源关闭) 此外,在 运行模式 下,可以通过以下方式中的一种降低功耗: ● 降低系统时钟 在运行模式下,通过对预分频寄存器进行编程,可以降低任意一个系统时钟(SYSCLK、 HCLK、 PCLK1、 PCLK2)的速度。进入睡眠模式前,也可以利用预分频器来降低外设的时钟。 ● 关闭APB和AHB总线上未被使用的外设时钟。 在运行模式下,任何时候都可以通过停止为外设和内存提供时钟(HCLK和PCLKx)来减少功耗。为了在睡眠模式下更多地减少功耗

DSP学习笔记(三)——TMS320F28335硬件结构

ε祈祈猫儿з 提交于 2019-12-11 17:02:24
本文转载连接: https://blog.csdn.net/wasser000/article/details/91843085 第二章 TMS320F28335 硬件结构 1 TMS320F28335 硬件概述 Tms320f28335主要有8个部分组成,由32位的cpu内核、集成内存、总线、DMA、DMA总线、中断管理、控制率加速器、外设总线、外设等部分。 总线为哈佛结构,cpu可在一个时钟周期完成对数据存储器与程序存储器的访问。 DMA总线,可以使特定模块直接与内存交换数据,不过cpu。 2 cpu架构 2.1 内核 F28335属于C28x+FPU(Floating Point Unit,浮点运算单元)的C28x 系列增强型DSP 控制器(Digital Signal Controllers,DSC),包括一个32位定点cpu一个32位浮点运算单元。 浮点数格式遵循ieee-754标准。(IEEE 754规定了四种表示浮点数值的方式:单精确度(32位)、双精确度(64位)、延伸单精确度(43比特以上,很少使用)与延伸双精确度(79比特以上,通常以80位实现)。只有32位模式有强制要求,其他都是选择性的。) 2.2 乘法器 F28335内嵌一个16×16位和32×32位的乘法器及乘累加核(MAC),可以在一个指令周期完成32×32位乘法进行累加运算。 2.3 移位器