状态寄存器

基础常用arm汇编指令

一个人想着一个人 提交于 2019-12-11 03:55:36
内存访问指令:ldr,str,ldm,stm ldr( Load from memory into register): ldr{条件} 目的寄存器 <存储器地址> 作用: 指令从内存中读出数据到寄存器中 比如: ldr r1, [r2,#4] //将地址r2+4的内存单元的数据读取到r1中 ldr r1,[r2] //将地址r2的内存单元的数据读取到r1中。 R1<——[R2] 注意:ldr中的第二个参数为=时,表示伪指令,或者表示内存访问指令 比如 ldr r1,=4096 ; str: Store from a register into memory 把指令寄存器的值储存到内存中。 比如: str r1,[r2,#4] //将r1的数据保存到地址为r2+4的内存单元中 str r1,[r2] //将r1的数据保存到地址为r2的内存单元中 R1——>[R2] ldm: Load from memory into many register 格式如下: ldm{cond}<addressing_mode> {!} {^} <addressing_mode>表示地址变化模式,有以下4中方式 1、ia(increment after):事后递增 2、ib(increment before):事先递增 3、da(decrement after):事后递减 4、db(decrement

PCI设备编号

空扰寡人 提交于 2019-12-11 02:44:02
1.PCI设备编号 每一个PCI device都有其unique PFA(PCI Fcntion Address) PFA由 bus number、device number、function number组成 一条PCI总线支持256个PFA,即支持256个PCI device 每个PCI芯片都有自己的device number(取决于IDSEL管脚),每个PCI芯片占用8个PFA。 每个PCI芯片的第一个PCI device的PFA必为8的倍数。 若PCI device的配置空间中PCI_HEADER_TYPE寄存器的最高bit为1,说明此芯片还有其他PFA,即还有其他device,即当前芯片是 multi-function device . Each function on a multi-function device has its own configuration space 在系统中,每个PCI芯片上的所独有的信号线是:INTA、INTB、INTC、INTD、IDSEL 每个芯片上的IDSEL需要连到PCI总线中AD[31:11]中的一根,这对应于PCI device PFA的device number IDSEL is equivalent to chip select on the CPU side during address phase of CFG RD

程序员需要了解的硬核知识之控制硬件

孤街醉人 提交于 2019-12-10 21:45:40
应用和硬件的关系 我们作为程序员一般很少直接操控硬件,我们一般通过 C、Java 等高级语言编写的程序起到间接控制硬件的作用。所以大家很少直接接触到硬件的指令,硬件的控制是由 Windows 操作系统 全权负责的。 你一定猜到我要说什么了,没错,我会说但是,任何事情没有绝对性,环境的不同会造成结果的偏差。虽然程序员没法直接控制硬件,并且 Windows 屏蔽了控制硬件的细节,但是 Windows 却为你开放了 系统调用 功能来实现对硬件的控制。在 Windows 中,系统调用称为 API ,API 就是应用调用的函数,这些函数的实体被存放在 DLL 文件中。 下面我们来看一个通过系统调用来间接控制硬件的实例 假如要在窗口中显示字符串,就可以使用 Windows API 中的 TextOut 函数。TextOut 函数的语法(C 语言)如下 BOOL TextOut{ HDC hdc, // 设备描述表的句柄 int nXStart, // 显示字符串的 x 坐标 int nYStart, // 显示字符串的 y 坐标 LPCTSTR lpString, // 指向字符串的指针 int cbString // 字符串的文字数 } 那么,在处理 TextOut 函数的内容时,Windows 做了些什么呢?从结果来看,Windows 直接控制了作为硬件的显示器。但 Windows

STM32 GPIO口的配置和应用

我的梦境 提交于 2019-12-10 16:38:31
STM32F103ZET6 一共有7组IO口(有FT的标识是可以识别5v的) 每组IO口有16个IO 一共16*7=112个IO 4种输入模式: (1) GPIO_Mode_AIN 模拟输入 (2) GPIO_Mode_IN_FLOATING 浮空输入 (3) GPIO_Mode_IPD 下拉输入 (4) GPIO_Mode_IPU 上拉输入 4种输出模式: (5) GPIO_Mode_Out_OD 开漏输出 (6) GPIO_Mode_Out_PP 推挽输出 (7) GPIO_Mode_AF_OD 复用开漏输出 (8) GPIO_Mode_AF_PP 复用推挽输出 四种输入模式: 1、一图记住上拉、下拉、浮空输入模式: 原理分析:图中箭头表示信号流动方向。从I/O引脚向左沿着箭头方向,首先遇到两个开关和电阻,与VDD相连的称为上拉电阻,与Vss相连的称为下拉电阻,再连接到施密特触发器(信号转换)把电压信号转化为0、1的数字信号,存储在输入数据寄存器(IDR)。然后通过设置配置寄存器(CRL、CRH)控制这两个开关,于是就可以得到GPIO的上拉输入、下拉输入模式和浮空输入模式,浮空就是既不接上拉也不接下拉。在上拉/下拉/浮空输入模式中,输出缓冲器被禁止(P-MOS和N-MOS),施密特触发器输入被激活,根据输入配置(上拉,下拉或浮动)的不同,弱上拉和下拉电阻被连接

STM32 GPIO口的配置和应用

自作多情 提交于 2019-12-10 13:27:37
STM32F103ZET6 一共有7组IO口(有FT的标识是可以识别5v的) 每组IO口有16个IO 一共16*7=112个IO 4种输入模式: (1) GPIO_Mode_AIN 模拟输入 (2) GPIO_Mode_IN_FLOATING 浮空输入 (3) GPIO_Mode_IPD 下拉输入 (4) GPIO_Mode_IPU 上拉输入 4种输出模式: (5) GPIO_Mode_Out_OD 开漏输出 (6) GPIO_Mode_Out_PP 推挽输出 (7) GPIO_Mode_AF_OD 复用开漏输出 (8) GPIO_Mode_AF_PP 复用推挽输出 四种输入模式: 1、一图记住上拉、下拉、浮空输入模式: 原理分析:图中箭头表示信号流动方向。从I/O引脚向左沿着箭头方向,首先遇到两个开关和电阻,与VDD相连的称为上拉电阻,与Vss相连的称为下拉电阻,再连接到施密特触发器(信号转换)把电压信号转化为0、1的数字信号,存储在输入数据寄存器(IDR)。然后通过设置配置寄存器(CRL、CRH)控制这两个开关,于是就可以得到GPIO的上拉输入、下拉输入模式和浮空输入模式,浮空就是既不接上拉也不接下拉。在上拉/下拉/浮空输入模式中,输出缓冲器被禁止(P-MOS和N-MOS),施密特触发器输入被激活,根据输入配置(上拉,下拉或浮动)的不同,弱上拉和下拉电阻被连接

Rocket - debug - Example: DMI

折月煮酒 提交于 2019-12-10 13:09:13
https://mp.weixin.qq.com/s/7suuJ7m2BKCpsHk1K2FzJQ 介绍riscv-debug的使用实例:如何使用DMI。 1. dm Debug Module实现了调试模块。 2. dmi Debug Module Interface是对Debug Module的访问接口。 3. DTM dmi包含在DTM中。DTM是硬件接口相关的,可以是JTAG DTM,也可以是USB DTM。 4. JTAG DTM Registers 1) 支持的寄存器列表 a. 这里的address实际上是要存入IR中的指令编码; b. 而这些寄存器则是数据寄存器(Data Register); c. 使用存入IR中的指令编码来选择相应的数据寄存器(Data Register): 2) dmi Register 实现调试模块(Debug Module)访问的核心寄存器,用以实现对调试模块中各个寄存器的读写: 至于dmi寄存器自身,则通过JTAG接口进行访问: a. 在IR中填入0x11,选择dmi数据寄存器; b. In Update-DR, the DTM starts the operation specified in op unless the current status reported in op is sticky. c. In Capture-DR,

ARM汇编指令

让人想犯罪 __ 提交于 2019-12-10 07:40:14
转载: arm汇编指令-Bingghost-博客园 学习嵌入式系统时的资料收集 ARM处理器的指令集可以分为跳转指令、数据处理指令、程序状态寄存器(PSR)处理指令、加载/存储指令、协处理器指令和异常产生指令6大指令 一、跳转指令 跳转指令用于实现程序流程的跳转 跳转指令分类 Ⅰ.使用专门的跳转指令 分支指令 B 带链接的分支指令: BL 带状态切换的分支指令 BX Ⅱ. 程序计数器PC控制 直接向程序计数器PC写入跳转地址值,通过向程序计数器PC写入跳转地址值 可以实现在4GB的地址空间中的任意跳转,在跳转之前结合使用MOV LR,PC等类似指令 可以保存将来的返回地址值,从而实现在4GB连续的线性地址空间的子程序调用。 ARM指令集中的跳转指令可以完成从当前指令向前或向后的32MB的地址空间的跳转,包括以下4条指令: 1、B指令 B指令的格式为: B{条件} 目标地址 2、BL指令 BL指令的格式为: BL{条件} 目标地址 BL是另一个跳转指令,但跳转之前,会在寄存器R14中保存PC的当前内容, 因此,可以通过将R14的内容重新加载到PC中,来返回到跳转指令之后的那个 指令处执行。 该指令是实现子程序调用的一个基本但常用的手段 3、BLX指令 BLX指令的格式为: BLX 目标地址 BLX指令从ARM指令集跳转到指令中所指定的目标地址

linux从head.s到start_kernelstart_kernel之---内核解压到重定位分析

旧街凉风 提交于 2019-12-09 16:20:00
一: arm linux 内核生成过程 1. 依据arch/arm/kernel/vmlinux.lds 生成linux内核源码根目录下的vmlinux,这个vmlinux属于未压缩,带调试信息、符号表的最初的内核,大小约23MB; 命令:arm-linux-gnu-ld -o vmlinux -T arch/arm/kernel/vmlinux.lds arch/arm/kernel/head.o init/built-in.o --start-group arch/arm/mach-s3c2410/built-in.o kernel/built-in.o mm/built-in.o fs/built-in.o ipc/built-in.o drivers/built-in.o net/built-in.o --end-group .tmp_kallsyms2.o 2. 将上面的vmlinux去除调试信息、注释、符号表等内容,生成arch/arm/boot/Image,这是不带多余信息的linux内核,Image的大小约3.2MB;    命令:arm-linux-gnu-objcopy -O binary -S vmlinux arch/arm/boot/Image 3. 将 arch/arm/boot/Image 用gzip -9 压缩生成arch/arm/boot

UART在4412上的裸机开发

百般思念 提交于 2019-12-09 12:46:32
UART(通用异步传输收发器)简介 串行通信简介 我们的实际生活中,常见的通信方式有很多,例如:蓝牙,WIFI,网线,红外,HDMI VGA,USB,I2C,SP1,UART等,每种都有自己的特点以及常用的场合。今天,我们就来看看我们的串行通信。通用异步收发器简称UART,即“Universal Asynchronous Receiver Transmitter”, 它 串行通信是指计算机与I/O 设备之间数据传输的各位是按顺序依次一位接一位进行传送。通常数据在一根数据线上传输。具体情况如下:用来传输串行数据:发送数据时,CPU将并行数据写入UART,UART按照一定的格式在一根电线上串行发出;接收数据时,UART检测另一根电线上的信号,将串行收集放在缓冲区中,CPU即可读取UART获得这些数据。UART之间以全双工方式传输数据,最精简的连线方法只有三根电线:TxD用于发送数据,RxD用于接收数据,Gnd用于给双方提供参考电平,连线如图7.1所示:transmission recvfrom 我们通俗所使用的串口硬件格式为: 实质上,大部分我们只是使用了里面的3根线。 UART使用标准的TTL/CMOS逻辑电平(0~5V、0~3.3V、0~2.5V或0~1.8V四种)来表示数据,高电平表示1,低电平表示0。为了增强数据的抗干扰能力、提高传输长度,通常将TTL

单片机的组成、工作原理、分类、特点以及发展趋势

老子叫甜甜 提交于 2019-12-07 01:09:45
芯片在没有开发前,单片机只是具备功能极强的超大规模集成电路,如果赋予它特定的程序,它便是一个最小的、完整的微型计算机控制系统,它与个人电脑(PC机)有着本质的区别,单片机的应用属于芯片级应用,需要用户了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使该芯片具备特定的功能。 不同的单片机有着不同的硬件特征和软件特征,即它们的技术特征均不尽相同,硬件特征取决于单片机芯片的内部结构,用户要使用某种单片机,必须了解该型产品是否满足需要的功能和应用系统所要求的特性指标。这里的技术特征包括功能特性、控制特性和电气特性等等,这些信息需要从生产厂商的技术手册中得到。软件特征是指指令系统特性和开发支持环境,指令特性即我们熟悉的单片机的寻址方式,数据处理和逻辑处理方式,输入输出特性及对电源的要求等等。开发支持的环境包括指令的兼容及可移植性,支持软件(包含可支持开发应用程序的软件资源)及硬件资源。要利用某型号单片机开发自己的应用系统,掌握其结构特征和技术特征是必须的。 单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以软件控制来实现,并能够实现智能化,现在单片机控制范畴无所不在,例如通信产品、家用电器、智能仪器仪表、过程控制和专用控制装置等等,单片机的应用领域越来越广泛。诚然