目标检测之IoU、precision、recall、AP、mAP详解
目录 1. 目标检测概述 2. IoU 3.precision(精度)和recall(召回率) 4. AP和mAP 5.实际计算方法 1. 目标检测概述 目标检测的任务是找出图像中所有感兴趣的目标(物体),确定它们的位置和大小,是计算机视觉领域的核心问题之一。以下图为例,图中需要识别3类物体:car(车)、bicycle(自行车)、dog(狗),通过特定的目标检测算法希望最终把每类物体检测出来,每类物体用一个矩形框框出来并且输出对应的类别。 因此,目标检测可以简单的理解为用个框把物体框出来并告诉我这个框里是什么。 在目标检测领域需要衡量每个检测算法的好坏,因此定义了很多指标,例如常见的IoU、precision、recall、AP、mAP等, 各个算法经过检测后得到每个物体的检测框和置信度,然后根据该值来计算上述指标值,从而方便大家一起来评估各个算法的优劣。 每个指标各不相同,下面详细阐述每个指标的概念和计算方法。 2. IoU IoU全程为Intersection Over Union ,意思是“并集里面的交集”。它的计算可以简单的用下图表示: 一个物体它会有一个真值框,英文称为ground truth,也就是我们实际为它标注的真实矩形框(一般情况下该矩形框是物体的最小外接矩形框,手工标注)。在评价一个算法的时候首先用该算法对图片进行检测,得到该物体的预测框