17-正交矩阵和Gram-Schmidt正交化
一、正交矩阵 定义:Orthogonal Matrix (必为方阵) 如果$A^TA=AA^T=I$,则$n$阶实矩阵$A$称为正交矩阵 性质: 1)$A^T$是正交矩阵 2)$A$的各行是单位向量且两两正交 3)$A$的各列是单位向量且两两正交 4)|A|=1或-1 举例: 二、标准正交矩阵的优势 1)求解投影矩阵 在 投影矩阵章节 我们已经知道投影矩阵为: $P=A\left(A^{T} A\right)^{-1} A^{T}$ 当矩阵A为标准正交矩阵Q时 ,由于正交矩阵与其转置的乘积为单位矩阵,则上式可以转化为: $P=QQ^{T}$ 这样就将投影矩阵简单化了。 2)求解$Ax=b$ 在 投影矩阵章节 我们已经知道: $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$ 当矩阵A为标准正交矩阵Q时 ,由于正交矩阵与其转置的乘积为单位矩阵,则上式可以转化为: $\hat{x}=Q^{T} b$ 三、Gram-Schmidt正交化 1) 二维情况 假设原来的矩阵为[a,b],a,b为 线性无关的二维向量 ,下面我们通过Gram-Schmidt正交化获得 标准正交矩阵 假设正交化后的矩阵为Q=[A,B],我们可以令$A=a$,$B$垂直于$A$,根据我们 在 前面所讲的投影