pointnet-补充材料阅读
文章正文部分参考博客: https://blog.csdn.net/batflo_wsh/article/details/89330195 论文地址: https://arxiv.org/pdf/1612.00593.pdf Supplementary A.Overview 该文件为主要论文提供了额外的定量结果,技术细节和更多定性的测试示例。 在Sec B中,我们扩展了健壮性测试,以比较不完整输入上的PointNet和VoxNet。 在Sec C中,我们提供了有关神经网络架构,训练参数的更多详细信息,在Sec D中,我们描述了场景中的检测流程。 然后,Sec E显示了PointNet的更多应用,而Sec F显示了更多的分析实验。Sec G为我们在PointNet上的理论提供了证明。 最后,我们在Sec H中显示了更多的可视化结果。 B. Comparison between PointNet and VoxNet (Sec 5.2) 我们扩展了第5.2节“鲁棒性测试”中的实验,以比较PointNet和VoxNet [17](代表体积的代表性体系结构)输入点云中丢失的数据的鲁棒性。两个网络都在相同的训练测试段上进行训练,输入的点数为1024。对于VoxNet,我们将点云体素化为32×32×32的占用栅格,并通过围绕上轴的随机旋转和抖动来增强训练数据。 在测试时