一致性检验

层次分析法

萝らか妹 提交于 2020-02-26 00:14:48
title: 层次分析法 date: 2020-02-25 19:14:41 categories: 数学建模 tags: [MATLAB, 评价模型] mathjax: true 定义 ​ 层次分析法(The Analytic Hierarchy Process即AHP)是由美国运筹学家、 匹兹堡大学教授T . L. Saaty于20世纪70年代创立的一种系统分析与决策的综合 评价方法,是在充分研究了人类思维过程的基础上提出来的,它较合理地解 决了定性问题定量化的处理过程。 ​ AHP的主要特点是通过建立递阶层次结构,把人类的判断转化到若干因 素两两之间重要度的比较上,从而把难于量化的定性判断转化为可操作的重 要度的比较上面。在许多情况下,决策者可以直接使用AHP进行决策,极大 地提高了决策的有效性、可靠性和可行性,但其本质是一种思维方式,它把 复杂问题分解成多个组成因素,又将这些因素按支配关系分别形成递阶层次 结构,通过两两比较的方法确定决策方案相对重要度的总排序。整个过程体 现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避 决策者主观判断的缺点。 步骤 第一步递阶层次结构 分析系统中各因素之间的关系,建立系统的递阶层次结构。 第二步构造判断矩阵 {1,2,3,...,9}:代表重要程度,逐渐递增 得到一个方阵,我们记为A,对应的元素为 \(a_{ij}\)

分布式系统CAP为什么不能同时满足?

血红的双手。 提交于 2020-01-11 09:26:10
分布式系统当中有一个著名的 CAP 理论,它也是分布式系统理论的基础。 CAP理论最早发表于2000年,由加州伯克利的教授首先在ACM PODC会议上提出猜想,两年之后,被麻省理工学院的教授Seth Gilbert和Nancy Lynch从理论上证明。从此之后,它成了分布式系统领域的公认定理。 今天这篇文章就和大家聊聊这个大名鼎鼎的CAP理论。 CAP理论描述起来其实很简单,它说的是 一个分布式系统最多只能满足C(一致性)、A(可用性)和P(分区性)这三者当中的两个 。我们先来看一下这三项分别代表了什么。 Consistency 一致性 分布式系统当中的一致性指的是 所有节点的数据一致 ,或者说是 所有副本的数据一致 。用英文描述是: All the nodes see the same data at the same time 。它和数据库事务中的一致性是两码事,在我们之前的文章里,曾经详细描述过分布式系统中的各种一致性模型,感兴趣的同学可以点击这里。 我们可以将一致性一分为二,分别从 客户端和服务端 进行探究。对于客户端而言,并不关心后端的实现,也不关心后端的节点运行情况。唯一只关心 多次并发访问下都能获得准确的符合预期的结果 。比如用户多次点击付款,也只会付款一次,余额无论什么时候查询都是当下最新的值。 而服务端关心的是会引发数据变更的请求过来,

分布式系统的异常、一致性与衡量指标

∥☆過路亽.° 提交于 2019-11-28 02:35:13
1.1 模型 节点 在具体的工程项目中,一个节点往往是一个操作系统上的进程。在本文的模型中,认为节点是一个完整的、不可分的整体,如果某个程序进程实际上由若干相对独立部分构成,则在模型中可以将一个进程划分为多个节点。 异常 机器宕机 :机器宕机是最常见的异常之一。在大型集群中每日宕机发生的概率为千分之一左右,在实践中,一台宕机的机器恢复的时间通常认为是24 小时,一般需要人工介入重启机器。 网络异常 :消息丢失,两片节点之间彼此完全无法通信,即出现了“网络分化”;消息乱序,有一定的概率不是按照发送时的顺序依次到达目的节点,考虑使用序列号等机制处理网络消息的乱序问题,使得无效的、过期的网络消息不影响系统的正确性;数据错误;不可靠的TCP,TCP 协议为应用层提供了可靠的、面向连接的传输服务,但在分布式系统的协议设计中不能认为所有网络通信都基于TCP 协议则通信就是可靠的。TCP协议只能保证同一个TCP 链接内的网络消息不乱序,TCP 链接之间的网络消息顺序则无法保证。 分布式三态 :如果某个节点向另一个节点发起RPC(Remote procedure call)调用,即某个节点A 向另一个节点B 发送一个消息,节点B 根据收到的消息内容完成某些操作,并将操作的结果通过另一个消息返回给节点A,那么这个RPC 执行的结果有三种状态:“成功”、“失败”、“超时(未知)”

判断矩阵一致性检验的Matlab源程序代码

只谈情不闲聊 提交于 2019-11-26 01:33:39
Matlab源程序代码如下: clc clear disp ( '请输入判断矩阵A' ) A = input ( 'A=' ) ; [ n , n ] = size ( A ) % 方法 1 : 算术平均法 Sum_A = sum ( A ) ; SUM_A = repmat ( Sum_A , n , 1 ) ; Stand_A = A . / SUM_A ; Stand_A = A . / Sum_A ; % 这样也可以的 disp ( '算术平均法求权重的结果为:' ) ; disp ( sum ( Stand_A , 2 ) . / n ) % 方法 2 : 几何平均法 Prduct_A = prod ( A , 2 ) ; Prduct_n_A = Prduct_A . ^ ( 1 / n ) ; disp ( '几何平均法求权重的结果为:' ) ; disp ( Prduct_n_A . / sum ( Prduct_n_A ) ) % 方法 3 : 特征值法求权重 [ V , D ] = eig ( A ) ; Max_eig = max ( max ( D ) ) [ r , c ] = find ( D == Max_eig , 1 ) ; disp ( '特征值法求权重的结果为:' ) ; disp ( V ( : , c ) . / sum ( V ( : ,