YAML

Using the same EntityListener for multiple entities with differrent service argument

做~自己de王妃 提交于 2021-02-10 07:25:51
问题 As an EntityListener is registered as a service, is it possible to register the same class multiple times with different argument and associate each of them with a particular entity ? Considering the following entities : /** * Class EntityA * @ORM\Entity * @ORM\EntityListeners({"myBundle\EventListener\SharedListener"}) */ class EntityA implements sharedBehaviourInterface { // stuff here } /** * Class EntityB * @ORM\Entity * @ORM\EntityListeners({"myBundle\EventListener\SharedListener"}) */

R read_yaml() reads a vector as parameter

那年仲夏 提交于 2021-02-10 06:29:08
问题 I would like to read a .yaml file to get yaml parameters for a Rmarkdown report. Original I have a yaml header to define a vector. --- params: ids: !r c(2455, 2490) --- and it works, where params$ids is a vector. However, if I put ids: !r c(2455, 2490) into a report_params.yaml file, and read that yaml file by report_params <- yaml::read_yaml("report_params.yaml") now report_params$ids is a string 'c(2455, 2490)' . so what did I miss, and how should I fix this? 回答1: The YAML default handler

Conda environment from .yaml offline

自作多情 提交于 2021-02-10 05:15:11
问题 I would like to create a Conda environment from a .yaml file on an offline machine (i.e. no Internet access). On an online machine this works perfectly fine: conda env create -f environment.yaml However, it doesn't work on an offline machine as the packages are then not found. How do I do this? If that's not possible is there another easy way to get my complete Conda environment to an offline machine (including both Conda and pip installed packages)? Going through the packages one by one to

Conda environment from .yaml offline

谁都会走 提交于 2021-02-10 05:14:13
问题 I would like to create a Conda environment from a .yaml file on an offline machine (i.e. no Internet access). On an online machine this works perfectly fine: conda env create -f environment.yaml However, it doesn't work on an offline machine as the packages are then not found. How do I do this? If that's not possible is there another easy way to get my complete Conda environment to an offline machine (including both Conda and pip installed packages)? Going through the packages one by one to

Swagger Multiple Examples Not Showing

社会主义新天地 提交于 2021-02-10 05:13:46
问题 When I add examples into my swagger doc and test it on the swagger editor, then it never shows anywhere. Could someone give me an example of where multiple examples are actually showing anywhere? Here is an example of how multiple examples are added: it is from: https://swagger.io/docs/specification/adding-examples/ Here is an example of yaml that does not display any examples on the online swagger editor: openapi: 3.0.0 info: title: Some API version: 1.0.0 paths: /logon: get: summary: Login

Swagger Multiple Examples Not Showing

我与影子孤独终老i 提交于 2021-02-10 05:13:33
问题 When I add examples into my swagger doc and test it on the swagger editor, then it never shows anywhere. Could someone give me an example of where multiple examples are actually showing anywhere? Here is an example of how multiple examples are added: it is from: https://swagger.io/docs/specification/adding-examples/ Here is an example of yaml that does not display any examples on the online swagger editor: openapi: 3.0.0 info: title: Some API version: 1.0.0 paths: /logon: get: summary: Login

Fn::ImportValue does not match type {Array}

两盒软妹~` 提交于 2021-02-10 04:47:42
问题 I faced an issue with using the export and import functionality in CloudFormation. When I tried to import a value which actually is a list (array) I received the following error message "does not match type {Array}". vpc.yaml (snippet) PrivateSubnets: Description: A list of the private subnets Value: !Join [",", [!Ref PrivateSubnetOne, !Ref PrivateSubnetTwo]] Export: Name: !Join ["-", [!Ref "Environment", "PrivateSubnets"] ] pipeline.yaml (snippet) Subnets: Fn::ImportValue: !Sub "$

Fn::ImportValue does not match type {Array}

删除回忆录丶 提交于 2021-02-10 04:47:39
问题 I faced an issue with using the export and import functionality in CloudFormation. When I tried to import a value which actually is a list (array) I received the following error message "does not match type {Array}". vpc.yaml (snippet) PrivateSubnets: Description: A list of the private subnets Value: !Join [",", [!Ref PrivateSubnetOne, !Ref PrivateSubnetTwo]] Export: Name: !Join ["-", [!Ref "Environment", "PrivateSubnets"] ] pipeline.yaml (snippet) Subnets: Fn::ImportValue: !Sub "$

《Kubernetes权威指南》基本概念

不打扰是莪最后的温柔 提交于 2021-02-09 09:58:03
一 、基本概念 kubernetes 中的 Node 、 Pod 、 Replication Controller 、 Service 等都是一种“资源对象”,基本都可以通过 kubectl 或者通过API编程调用,执行增删改查操作都保存在ETCD中持久化存储 1.1 Master 作用:每个k8s集群都需要一个mater节点来管理,master一般是单独部署 核心组件: Kubernetes API Server(kube-apiserver),提供HTTP REST 接口的关键服务进程,是k8s里所有资源增删改查 等操作的唯一入口 Kubernetes Controller Manager (kube-controller-manager),k8s所有资源的自动化控制中心。 Kubernetes Scheduler(kube-scheduler),调度(POD)的进程。 ETCD,master节点一般还启动一个ETCD Server进程,所有资源对象的数据全部保存在ETCD中 1.2 Node 除了Master,k8s集群的其他节点都称为Node节点,Node节点是k8s集群中的工作负载节点,当某个Node宕机,骑上的工作负载会被master自动转移到其他节点上 核心组件: kubelet:负责Pod对象的容器创建、启停等任务,同时与Master节点密切协作 kube

Knative 入门系列7:实战演练

ⅰ亾dé卋堺 提交于 2021-02-08 21:57:00
作者:Brian McClain & Bryan Friedman 译者:张晓鹏 审校:孙海洲、邱世达、宋净超 Knative 是一个基于 Kubernetes 的,用于构建、部署和管理现代 serverless 应用的平台。Getting Started with Knative 是一本由 Pivotal 公司赞助 O’Reilly 出品的电子书,公众号后台回复“ knative ”获取英文版下载地址。本书中文版由 ServiceMesher 社区自发翻译系列文章,这是该系列的第7章。 让我们把我们所学的一切运用起来去创造一些东西吧!我们进行一个演练,它利用了您前面所学到的许多知识,并通过使用美国地质勘探局 (USGS) 地震数据源的数据提供了一个服务,以可视化地展示世界各地的地震活动。您可以在 GitHub 存储库 gswk/earthquakedemo 中找到我们将要介绍的代码。 架构 在深入研究代码之前,让我们先看看应用程序的体系架构,如 图7-1 所示。我们在这里构建三个重要的东西:事件源、服务和前端。 图中 Knative 内部的每一个组件都代表着我们将利用目前所学的知识来构建的内容,包括使用 Kaniko 构建模板的服务和用于轮询数据的自定义事件源: USGS 事件源 我们将构建一个自定义的 ContainerSource 事件源,它将在给定的时间间隔轮询 USGS