信号传输

【光通信】参数'G'和'GE’的技术实现区别

倖福魔咒の 提交于 2020-02-26 02:19:31
100G传输技术介绍 2008年,基于40Gbps速率的WDM系统已经规模商用,许多运营商和设备商都把眼光投向100G WDM系统。其中随着100GE路由器接口标准化的完成,100G的长途传输也进入了议事日程。与40Gbps WDM系统相比,100G传输的商用化需要解决四大关键技术:100G线路传输技术、100GE接口技术、100GE封装映射技术和100G关键器件技术,下面分别概述其最新进展。   100G线路传输技术   现有100G线路传输技术主要有两种方案:多波传输方案和单波传输方案。   在100G多波传输方案中,100G信号反向复用为多波长的10Gbps/40Gbps OTU2/OTU3信号。这种方案不会对现有的10G或40G光传送网络产生影响,并可以在现有的器件技术下实现,因而是现阶段可实现的方案。但这种方案的波长利用率较低,也存在波长管理及多个波长间时延差的控制问题,所以这种方案不是100G线路传输技术的最终商用方案。   100G单波传输方案可做到“一个业务,一个波长”,可以简化网络的管理。从器件发展及降低OPEX的角度来看,该方案是未来发展的方向。业界所讨论的100G传输基本上是讨论100Gbps 单波的长途传输。   由于波特率的提升,100G单波传输信号所受到的各种物理损伤较为严重。业界研究了新的码型以降低物理损伤对100G信号的影响

RS485串口编程

故事扮演 提交于 2020-02-25 20:08:10
1.1 单工、半双工、全双工 首先,我使用的是芯片为 SP3485E 为半双工通信。 那么先要明确什么是单工、半双工、全双工。 单工数据传输只支持数据在一个方向上传输; 半双工数据传输允许数据在两个方向上传输 ,但是,在某一时刻,只允许数据在一个方向上传输,它实际上是一种切换方向的单工通信; 全双工数据通信允许数据同时在两个方向上传输 ,因此,全双工通信是两个单工通信方式的结合,它要求发送设备和接收设备都有独立的接收和发送能力。 网卡的全双工(Full Duplex)是指网卡在发送数据的同时也能够接收数据,两者同步进行,这好像我们平时打电话一样,说话的同时也能够听到对方的声音。目前的网卡一般都支持全双工。 提到全双工,就不能不提与之密切对应的另一个概念,那就是“半双工(Half Duplex)”, 所谓半双工就是指一个时间段内只有一个动作发生 ,举个简单例子,一条窄窄的马路,同时只能有一辆车通过, 当目前有两量车对开,这种情况下就只能一辆先过,等到头儿后另一辆再开,这个例子就形象的说明了半双工的原理。早期的对讲机、以及早期集线器等设备都是基于半双工的产品。随着技术的不断进步,半双工会逐渐退出历史舞台。 1.2 关于RS485通信 RS232 标准是诞生于 RS485 之前的,但是 RS232 有几处不足的地方: 接口的信号电平值较高, 达到十几 V,使用不当容易损坏接口芯片

物理层知识整理

徘徊边缘 提交于 2020-02-10 20:47:31
一、物理层基本概念   物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。物理层的作用正是屏蔽掉这些传输媒体和通信手段的差异,使物理层上面的数据链路层感觉不到这些差异。可以将物理层的主要任务描述为确定与传输媒体的接口有关的一些特性,即: 机械特性 :指明接口所用接线器的形状和尺寸、引脚数目和排列、固定和锁定装置等 电器特性 :指明在接口电缆的各条线上出现的电压的范围 功能特性 :指明某条线上出现的某 一电平的电压的意义 过程特性 :指明对于不同功能的各种可能事件的出现顺序 物理层还要完成传输方式的转换(并行<——>串行) 二、数据通信的基础知识 1.数据通信系统 一个数据通信系统可划分为三大部分,即源系统(发送端)、传输系统和目的系统(接收端)     源系统一般包括以下两部分:源点、发送器(如调制器)     目的系统一般包括一下两部分:接收器(如解调器)、终点 2.信道 信道 :指以传输媒体为基础的信号通路,其作用是传输信号 单工通信:只能有一个方向的通信而没有反方向的交互 半双工通信:通信双方都可以发送信息,但不能双方同时发送(当然也不能同时接收) 全双工通信:通信双方可以同时发送和接收信息 码元 :代表不同离散数值的基本波形就称为码元。如二进制编码中,状态0和1是两种不同的码元。 3.来自信源的信号常称作基带信号

PCIe基础知识与例程分析----PIO_demo

左心房为你撑大大i 提交于 2020-02-10 15:05:02
PCIe基础知识与例程分析 一、 基础知识 1.1 关于接口 PCIe2x接口,对比其他系列,该接口包含2对发送与接收接口, 数据部分包含双向八个接口: PETp0与PETn0:发送器差动线对,通道0 PETp1与PETn1:发送器差动线对,通道1 PERp0与PERn0:接收器差动线对,通道0 PERp1与PERn1:接收器差动线对,通道1 故链路宽度为2,有几对链路差分对链路宽度即为多大。 1.2 TLP包 1.2.1 AXI-Stream总线上的数据 在赛灵思7系列FPGA中,使用AXIStream总线进行通信,PCIe的TLP包使用AXI总线传输,在AXI总线上数据大端对齐,即高位数据在地址的高位,在传输时AXIS总线上的数据形式: 图1.1 3DW_TLP包 图1.2 4DW_TLP包 What’s more,TLP是Transaction Layer Packet事务层包的检测,关于其详细内容可查看PICe的物理结构,主要是事务层(Transaction Layer)、数据链路层(Data Link Layer)和物理层(Physical Layer)。 事务(处理)层 :高层事务源事务源与传送设备的设备核心,结束于接收设备的设备核心,处理层是组装出站处理层数据包的起点,也是接收层拆解入站TLP的终点。在发送数据时,处理层根据设备核心的请求构建TLP头

关于IIC总线

二次信任 提交于 2020-02-08 12:51:45
关于IIC总线 I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。 1 I2C总线特点 I2C总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。 I2C总线的另一个优点是,它支持多主控(multimastering), 其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。 2 I2C总线工作原理 2.1 总线的构成及信号类型 I2C总线是由 数据线SDA 和 时钟SCL 构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。 各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作

计算机网络第二章:物理层

こ雲淡風輕ζ 提交于 2020-02-06 18:09:51
目录 1 物理层的基本概念 2 数据通信的基础知识 2.1 数据通信系统的模型 2.2 几个专业术语 2.3 有关信号的几个基本概念 2.4 基带(baseband)信号和带通(band pass)信号 2.5 几种最基本的调制方法 2.6 信道的极限容量 2.6.1 信道能够通过的频率范围 2.6.2 信噪比 2.6.3 香农公式的意义 3 物理层下面的传输媒体 3.1 导向传输媒体 3.1.1 双绞线 3.1.2 同轴电缆 3.1.3 光缆 4 信道复用技术 4.1 频分复用、时分复用和统计时分复用 4.2 频分复用 FDM (Frequency Division Multiplexing) 4.3 时分复用TDM (Time Division Multiplexing) 4.3.1 时分复用可能会造成线路资源的浪费 4.4 波分复用 WDM (Wavelength Division Multiplexing) 4.5 码分复用 CDM (Code Division Multiplexing) 4.5.1 码片序列(chip sequence) 4.5.2 CDMA 的工作原理 5 宽带接入技术 5.1 xDSL 技术 5.2 xDSL 的几种类型 5.3 ADSL 非对称数字用户线路(Asymmetric Digital Subscriber Line) 5.3.1 ADSL

TCP和UDP区别

跟風遠走 提交于 2020-02-03 20:26:21
TCP( Transmission Control Protocol ,传输控制协议) TCP协议是一种可靠的、一对一的、面向有连接的通信协议,TCP主要通过下列几种方式保证数据传输的可靠性: (1)在使用TCP协议进行数据传输时,往往需要客户端和服务端先建立一个“通道“、且这个通道只能够被客户端和服务端使用,所以TCP传输协议只能面向一对一的连接。 (2)为了保证数据传输的准确无误,TCP传输协议将用于传输的数据包分为若干个部分(每个部分的大小根据当时的网络情况而定),然后在它们的首部添加一个检验字节。当数据的一个部分被接收完毕之后,服务端会对这一部分的完整性和准确性进行校验,校验之后如果数据的完整度和准确度都为100%,在服务端会要求客户端开始数据下一个部分的传输,如果数据的完整性和准确性与原来不相符,那么服务端会要求客户端再次传输这个部分。 客户端与服务端在使用TCP传输协议时要先建立一个“通道”,在传输完毕之后又要关闭这“通道”,前者可以被形象地成为“三次握手”,而后者则可以被称为“四次挥手”。 通道的建立——三次握手: (1)在建立通道时,客户端首先要向服务端发送一个SYN同步信号。 (2)服务端在接收到这个信号之后会向客户端发出SYN同步信号和ACK确认信号。 (3)当服务端的ACK和SYN到达客户端后,客户端与服务端之间的这个“通道”就会被建立起来。 通道的关闭—

数据通信技术2

孤人 提交于 2020-02-03 07:07:48
通信线路的通信方式 点-点方式 多点方式 通信方式 从信息传送方向和时间的关系角度研究 单工通信方式:信息只能单项传输,监视信号可回送 半双工通信方式:信息可以双向传输,但在某一时刻只能单向传输 全双工通信方式:信息可以同时双向传输,一般采用四线式结构 全双工性能最好 单双工用的最多,因为全双工成本高(收发双方、线路) 传输介质 有线介质 如:同轴电缆、双绞线、光纤等 特点:需要布线、抗干扰性强 无线介质 通过大气进行传播,如:微波、红外线、卫星等。 特点:无需布线、抗干扰差 有线网络协议更简单,误码率低 无线网络协议复杂,误码率高,需要恢复。 双绞线 可以传输模拟信号(电话网络)和数字信号(以太网络) 分类: 无屏蔽双绞线 屏蔽双绞线 网卡接口也需要屏蔽措施(成本相对高) 带宽取决于铜线粗细,传输距离、采用技术影响 多采用点到点连接方式 抗干扰性取决于适当的屏蔽和线对的扭曲程度,低频传输接近同轴电缆,高频传输劣于其他有线介质 优点:组网方便、价格便宜(不仅仅是线的价格,还有连接器价格,维护,安装,使用期限) 同轴电缆 有线电视 多点连接使用总线型拓扑结构 只适合传输模拟信号 10 base 2/5 (10M 、基带传输、 使用50欧姆同轴电缆细缆点到点无中继器传输距离200米 / 50欧姆同轴电粗缆点到点无中继器传输距离500米 ) 10 broad 36 (10M 、 频带传输

《网络是怎样连接的》——第三章:从网线到网络设备

▼魔方 西西 提交于 2020-01-31 15:35:31
3.1信号在网线和集线器中的传输 3.2交换机的包转发 3.3路由器的包转发操作 3.4路由器的附加功能 3.1信号在网线和集线器中传输 3.1.1每个包都是独立传输的 客户端计算机连接的局域网结构如下图所示,要经过集线器,交换机和路由器最终进入互联网。 3.1.2防止网线中的信号衰减很重要 本章是从信号流出网卡进入网线开始,网卡中的PHY(MAU)模块负责将包转换成电信号,信号通过RJ-45接口进入双绞线。如下图右侧所示。 以太网信号的本质是正负变化的电压,网卡的PHY(MAU)模块就是一个从正负两个信号端子输出信号的电路。 网卡的PHY(MAU)模块直接连接在下图右侧中的RJ-45接口,信号从这个接口的1号和2号针脚流入网线,然后,信号会通过网线到达集线器的接口,这个过程就是单纯地传输电信号而已。 但是,信号到达集线器的时候并不是跟发出去的时候一摸一样,集线器收到的信号有时候会出现衰减,如下图所示。信号在网线的传输过程中能量会逐渐损失,网线越长,信号衰减就越严重。 以太网中的信号波形是方形的,但损失能量会让信号的拐角变圆,这是因为电信号的频率越高,能量的损失率越大。信号的拐角意味着电压发生剧烈的变化,而剧烈的变化意味着这部分的信号频率很高。高频信号更容易损失能量,因此本来剧烈变化的部分就会变成缓慢的变化,拐角也就变圆了。 如果已经衰减的信号再进一步失真就会出现对0和1的误判

SPI总线的特点、工作方式及常见错误解答

寵の児 提交于 2020-01-31 09:36:36
1.SPI总线简介    SPI (serial peripheral interface,串行 外围设备 接口)总线技术是Motorola公司推出的一种同步 串行接口 。它用于CPU与各种外围器件进行全双工、同步串行通讯。它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、 低电平 有效从机选择线CS。当SPI工作时,在移位 寄存器 中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。即完成一个字节数据传输的实质是两个器件寄存器内容的交换。主SPI的时钟信号(SCK)使传输同步。其典型系统框图如下图所示。 图1 典型系统框图 2.SPI总线的主要特点   SPI 接口一般使用 4 条线通信:     MISO 主设备数据输入,从设备数据输出。     MOSI 主设备数据输出,从设备数据输入。     SCLK 时钟信号,由主设备产生。     CS 从设备片选信号,由主设备控制。   全双工;   可以当作主机或从机工作;   提供频率可编程时钟;   发送结束中断标志;   写冲突保护;   总线竞争保护等。 3.SPI总线 工作方式