三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法
线性插值 先讲一下线性插值:已知数据 (x0, y0) 与 (x1, y1),要计算 [x0, x1] 区间内某一位置 x 在直线上的y值(反过来也是一样,略): y − y 0 x − x 0 = y 1 − y 0 x 1 − x 0 y = x 1 − x x 1 − x 0 y 0 + x − x 0 x 1 − x 0 y 1 上面比较好理解吧,仔细看就是用x和x0,x1的距离作为一个权重,用于y0和y1的加权。双线性插值本质上就是在两个方向上做线性插值。 双线性插值 在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值[1]。见下图: 假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。 最常见的情况,f就是一个像素点的像素值 。首先在 x 方向进行线性插值,得到 然后在 y 方向进行线性插值,得到 综合起来就是双线性插值最后的结果: 由于图像双线性插值只会用相邻的4个点,因此上述公式的分母都是1。opencv中的源码如下,用了一些优化手段,比如用整数计算代替float(下面代码中的*2048就是变11位小数为整数,最后有两个连乘,因此>>22位)