误差函数

深度学习基础知识题库大全

百般思念 提交于 2019-12-28 16:34:26
1、 梯度下降算法 的正确步骤是什么? a.计算预测值和真实值之间的误差 b.重复迭代,直至得到网络权重的最佳值 c.把输入传入网络,得到输出值 d.用随机值初始化权重和偏差 e.对每一个产生误差的神经元,调整相应的(权重)值以减小误差 A.abcde B.edcba C.cbaed D.dcaeb 解析:正确答案 D ,考查知识点-深度学习。 2、已知: - 大脑是有很多个叫做神经元的东西构成,神经网络是对大脑的简单的数学表达。 - 每一个神经元都有输入、处理函数和输出。 - 神经元组合起来形成了网络,可以拟合任何函数。 - 为了得到最佳的神经网络,我们用梯度下降方法不断更新模型 给定上述关于神经网络的描述,什么情况下 神经网络模型 被称为深度学习模型? A.加入更多层,使神经网络的深度增加 B.有维度更高的数据 C.当这是一个图形识别的问题时 D.以上都不正确 解析:正确答案 A ,更多层意味着网络更深。没有严格的定义多少层的模型才叫深度模型,目前如果有超过2层的隐层,那么也可以及叫做深度模型。 3、训练 CNN 时,可以对输入进行旋转、平移、缩放(增强数据)等预处理提高模型泛化能力。这么说是对,还是不对? A.对 B.不对 解析: 对 。如寒sir所说,训练CNN时,可以进行这些操作。当然也不一定是必须的,只是data augmentation扩充数据后,模型有更多数据训练

tensorflow学习笔记——ResNet

自闭症网瘾萝莉.ら 提交于 2019-12-28 09:06:56
  自2012年AlexNet提出以来,图像分类、目标检测等一系列领域都被卷积神经网络CNN统治着。接下来的时间里,人们不断设计新的深度学习网络模型来获得更好的训练效果。一般而言,许多网络结构的改进(例如从VGG到ResNet可以给很多不同的计算机视觉领域带来进一步性能的提高。   ResNet(Residual Neural Network)由微软研究员的 Kaiming He 等四位华人提出,通过使用 Residual Uint 成功训练152层深的神经网络,在 ILSVRC 2015比赛中获得了冠军,取得了 3.57%的top-5 的错误率,同时参数量却比 VGGNet低,效果非常突出,因为它“简单与实用”并存,之后很多方法都建立在ResNet50或者ResNet101的基础上完成的,检测,分割,识别等领域都纷纷使用ResNet,Alpha zero 也使用了ResNet,所以可见ResNet确实很好用。ResNet的结构可以极快的加速超深神经网络的训练,模型的准确率也有非常大的提升。之前我们学习了Inception V3,而Inception V4则是将 Inception Module和ResNet相结合。可以看到ResNet是一个推广性非常好的网络结构,甚至可以直接应用到 Inception Net中。 1,Highway Network简介   在ResNet之前

机器学习(二)——单变量线性回归

。_饼干妹妹 提交于 2019-12-28 06:30:21
前言: 吴恩达第二章单变量线性回归笔记 模型描述: 字符表示: m=数据集数量 x=input(自变量) y=output(因变量) 给出一定量的数据集关于,构建出相应(x,y)的位置.根据算法得到相应的拟合函数(即下图蓝线) 代价函数: Hypothesis(目标拟合函数): Parameters(参数): CostFunction(计算误差): Goal(目标): 由 我们可以绘制出如下等高线图 三个坐标分别为 如何获得 ? 梯度下降算法 重复以下步骤 repeat until convergence{ for(j=0 and j=1) } Correct Simultaneous update(正确的更新方式): α:为learning rate,用来控制下降时的速率 应同时更新 根据高等数学下偏导数知识: 总结: 根据该算法,一步一步算出误差最小时的 和 ,来得到理想的拟合函数。理想状态下当 取最小值时,误差时最小的,即当 和 两者为0的时候取到最小值。 由于该算法是一个个测试 与 ,逐渐最低点走,因此α的取值相当重要。 若α太大,可能会导致离最低点越来越远。 若α太小,得到最低点用的时间可能会很长 来源: CSDN 作者: SampsonTse 链接: https://blog.csdn.net/SampsonTse/article/details/103701488

搞深度学习需掌握的基础数学知识

落花浮王杯 提交于 2019-12-06 16:32:04
转载请注明出处: 乐投网-搞深度学习需掌握的基础数学知识 IT 互联网行业有个有趣现象,玩资本的人、玩产品的人、玩技术的人都能很好的在这个行业找到自己的位置并取得成功,而且可以只懂其中一样,不需要懂其余两样。玩技术的人是里面最难做的,也是三者收益最低的,永远都要不停学习,不停把画饼变成煎饼。 在今年 5 月底,AlphaGo 又战胜了围棋世界冠军柯洁,AI 再次呈现燎原之势席卷科技行业,吸引了众多架构师对这个领域技术发展的持续关注和学习,思考 AI 如何做工程化,如何把我们系统的应用架构、中间件分布式架构、大数据架构跟 AI 相结合,面向什么样的应用场景落地,对未来做好技术上的规划和布局。 为了彻底理解 深度学习 ,我们到底需要掌握哪些数学知识呢? 经常看到会列出一系列数学科目:微积分、线性代数、概率论、复变函数、数值计算等等。这些数学知识有相关性,但实际上这是一个最大化的知识范围,学习成本会非常久,本文尝试归纳理解深度学习所需要的最小化数学知识和推导过程。 (以下根据作者的学习理解整理,有误之处,欢迎专家学者提出指导批评)。 多层神经网络的函数构成关系 多层神经网络从输入层,跨多个隐含层,到最后输出层计算误差,从数学上可以看做一系列函数的嵌套组合而成,上一层函数输出做为下一层函数输入,如下图 1 所示。 图 1 先从误差函数说起,深度学习的误差函数有典型的差平方函数

《深度学习》笔记-正则化

拥有回忆 提交于 2019-12-05 22:07:55
算法效果不仅很大程度上受影响于假设空间的函数数量,也取决于这些函数数量的具体形式。 控制算法性能的两种方式:1.允许使用的函数数量,2.这些函数的数量。 正则化是指修改学习算法,使其降低泛化误差而非训练误差。 来源: https://www.cnblogs.com/wangzhenghua/p/11947093.html

[转帖]一文搞懂神经网络

六眼飞鱼酱① 提交于 2019-12-05 16:19:30
一文搞懂神经网络 人工智能是这几年非常火的技术,上至九十九下至刚会走都对人工智能或多或少的了解。神经网络是人工智能的核心,也就是说没有神经网络就没有人工智能,那么这篇文章就带大家学习一下神经网络相关的知识。这篇文章没有数学公式、没有代码,旨在帮助读者快速掌握神经网络的核心知识。 https://ai.51cto.com/art/201911/606086.htm 【51CTO.com原创稿件】人工智能是这几年非常火的技术,上至九十九下至刚会走都对人工智能或多或少的了解。神经网络是人工智能的核心,也就是说没有神经网络就没有人工智能,那么这篇文章就带大家学习一下神经网络相关的知识。这篇文章没有数学公式、没有代码,旨在帮助读者快速掌握神经网络的核心知识。 一、什么神经网络 概念 所谓神经网络简单说就是包含多个简单且高度相连的元素的系统,每个元素都会根据输入来处理相关信息。神经网络是由节点(神经元)组成,这些节点相互链接,信息传入到输入层之后由多个隐藏层进行处理,处理完后再传递给输出层进行最终处理。这里所说的最终处理有可能是输出结果,也有可能是作为输入数据传入到另外的神经网络或者节点进行下一轮的处理。 在上面的内容中我们多次提到节点,那么什么是节点呢?节点也被称为神经元,是一个神经网络的基本单元。它通过接收输入的数据来计算出应该输出的数据,输入的数据可能来自于其他节点或者是外部的输入源

吴恩达《深度学习》第二门课(1)深度学习的实用层面

狂风中的少年 提交于 2019-12-04 13:47:18
1.1训练,验证,测试集(Train/Dev/Test sets) (1)深度学习是一个按照下图进行循环的快速迭代的过程,往往需要多次才能为应用程序找到一个称心的神经网络。 (2)在机器学习中,通常将样本分成训练集,验证集和测试集三部分,数据规模相对较小,适合传统的划分比例(如6:2:2),数据集规模比较大的,验证集和测试集要小于数据总量的20%或者10%甚至更低。 (3)交叉验证集和测试集务必来自同分布。 (4)有时候只有训练集和验证集,没有独立的测试集(将无法提供无偏性能评估),这时人们也会把验证集称为测试集。 1.2偏差,方差(Bias/Varicance) (1)以下三个图分别表示欠拟合(高偏差),适度拟合,过拟合(高方差): (2)最优误差也称为贝叶斯误差,本节中假设最有误差为零(如在图像分类中人可以辨别出所有图像的类别)。 (3)训练误差减去左右误差为偏差,结果大说明偏差大;验证集误差减去训练误差为方差,结果大说明偏差大。 (4)是存在高偏差高方差的情况的,如下图,直线导致高偏差,局部过拟合导致高方差: 1.3机器学习基础 (1)偏差和方差是两种完全不同的情况,有分别对应的处理方法,不要盲目的使用一些策略。 (2)在深度学习时代,只要正则适度,通常构建一个更大的网络便可以在不影响方差的同时减少偏差,而采用更多数据通常可以在不过多影响偏差的同时减少方差。 1.4正则化

深度学习基础模型算法原理及编程实现--04.改进神经网络的方法

≡放荡痞女 提交于 2019-12-03 18:45:43
文章列表 1. 深度学习基础模型算法原理及编程实现–01.感知机 . 2. 深度学习基础模型算法原理及编程实现–02.线性单元 . 3. 深度学习基础模型算法原理及编程实现–03.全链接 . 4. 深度学习基础模型算法原理及编程实现–04.改进神经网络的方法 . 5. 深度学习基础模型算法原理及编程实现–05.卷积神经网络 . 6. 深度学习基础模型算法原理及编程实现–06.循环神经网络 . 9. 深度学习基础模型算法原理及编程实现–09.自编码网络 . 9. 深度学习基础模型算法原理及编程实现–10.优化方法:从梯度下降到NAdam . … 深度学习基础模型算法原理及编程实现–04.改进神经网络的方法 4.1 基本激活函数认知 4.1.1 sigmoid 5.1.2 tf.tanh 5.1.3 ReLU 5.1.4 Leaky ReLU 5.1.5 Softplus 5.2 增加隐藏层数 5.3 提升学习速率 5.3.1 梯度下降改为随机梯度下降 5.3.2 输出层激活函数与目标函数的选择 5.3.2.1 激活函数为sigmoid函数、损失函数为交叉项 5.3.2.2 激活函数为线性函数且损失函数为平方损失函数 5.3.2.3 损失函数为交叉项的好处 5.3.2.4 柔性最大值(softmax函数) 5.3.2.5 Softmax-loss 5.3.3

L0、L1、L2范数正则化

微笑、不失礼 提交于 2019-12-03 02:27:54
一、范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数。 一般分为L0、L1、L2与L_infinity范数。 二、范数正则化背景 1. 监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。 2 .  因为参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小。但训练误差小并不是我们的最终目标,我们的目标是希望模型的测试误差小,也就是能准确的预测新的样本。所以,我们需要保证模型“简单”的基础上最小化训练误差,这样得到的参数才具有好的泛化性能(也就是测试误差也小),而模型“简单”就是通过规则函数来实现的。另外,规则项的使用还可以约束我们的模型的特性 。 这样就可以将人对这个模型的先验知识融入到模型的学习当中,强行地让学习到的模型具有人想要的特性,例如稀疏、低秩、平滑等等。要知道,有时候人的先验是非常重要的。前人的经验会让你少走很多弯路,这就是为什么我们平时学习最好找个大牛带带的原因。一句点拨可以为我们拨开眼前乌云,还我们一片晴空万里,醍醐灌顶。对机器学习也是一样,如果被我们人稍微点拨一下

PRML学习笔记第一章

匿名 (未验证) 提交于 2019-12-03 00:41:02
【转】 模式识别的目标 自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等。 模型选择和参数调节 类似的一族规律通常可以以一种模型的形式为表达,选择合适模型的过程称为模型选择(Model Selection)。模型选择的目的只是选择模型的形式,而模型的参数是未定的。 从数据中获得具体规律的过程称为训练或学习,训练的过程就是根据数据来对选定的模型进行参数调节(Parameter Estimation)的过程,此过程中使用的数据为训练数据集(Training Set)。 对于相同数据源的数据来讲,规律应该是一般的(泛化Generalization),因此评估一个学习结果的有效性可以通过使用测试数据集(Testing Set)来进行的。 预处理 对于大多数现实中的数据集来讲,使用其进行学习之前,通常需要进行预处理,以提高学习精度及降低学习的开销。 以图像识别为例,若以像素做为一个特征,往往一幅图像的特征就能达到几万的数量级,而很多特征(如背景色)都是对于图像辨识起不到太大作用的,因此对于图像数据集,预处理过程通常包括维数约减(特征变换,特征选择),仅保留具有区分度的特征。 文本数据分类任务中,对训练文本也有类似的处理方式,只不过此时扮演特征的是单词,而不是像素值。 监督学习和非监督学习 输入向量(input vector): ,响应向量(target vector):