基于三维模型的目标识别和分割在杂乱的场景中的应用
点击上方“ 3D视觉工坊 ”,选择“星标” 干货第一时间送达 在杂波和遮挡情况下,对自由形式物体的识别及分割是一项具有挑战性的任务。本文提出了一种新的基于三维模型的算法,该算法可以有效地执行该任务,对象的三维模型是从其多个无序范围图像离线自动构建的,这些视图被转换为多维,用张量表示,通过使用基于哈希表的投票方案将视图的张量与其余视图的张量匹配,这些视图之间自动建立对应关系,形成一个相对转换图,用于将视图集成到无缝3D模型之前注册视图,该模型及其张量表示构成了模型库。在在线识别过程中,通过投票场景中的张量与库中的张量同时匹配,对于得票最多的模型张量并计算相似性度量,进而被转换为场景,如果它与场景中的对象精确对齐,则该对象被声明为识别和分割。这个过程被重复,直到场景完全分割。与自旋图像的比较表明,本文算法在识别率和效率方面都是优越的。 1.算法框图 (1) 离线三维建模 本文对多维视图对应算法使用4d散列表来执行一组对应搜索,如上图中的模块B和C,自动建立自由形式对象的无序2.5d视图之间的对应关系,结果是无序视图之间的相对转换的生成树,用于在基坐标系下粗略地对它们进行配准,使用多视图精细配准(模块D)对配准进行细化,然后将视图集成并重建为无缝三维模型(模块E)。 (2)在线识别与分割 场景的点云被转换成三角形网格,由于性能原因而被抽取。接下来,从这个网格中随机选择一对顶点来构造张量