特征函数

Fisher Vector费舍尔向量and FIsher Kernel费舍尔核

喜夏-厌秋 提交于 2019-11-27 08:10:52
之前想了解Fisher Vector(以下简称FV)和 Fisher Kernel(以下简称FK) ,花了很长时间查论文看博客,总算明白了点皮毛,为了以后自己能够记得起来,决定用自己能懂的话码出来。 1、FV的优点 FV和 广泛应用于图像分类、行为识别领域。为什么会广泛应用?肯定是因为FV有别的算法不具备的优点。什么有点呢?下面教科书一般的说明如下: 模式识别方法可以分为生成式方法和判别式方法。生成式注重对类条件概率密度函数的建模,主要反映同类数据之间的相似度,如GMM ;判别式聚焦于直接分类,反映异类数据之间的差异,如SVM 。 二者的优势:1,生成式方法可以处理长度不一的输入数据,2,判别式方法不能处理长度不一的数据但是分类效果较好。 而FV则主要结合两者优势,将生成式模型用于判别式分类器中,这就是FV的优势,那么FV如何拥有这样的优势呢?分析如下: 2、FV的推导 算法的推导过程都很繁复,但是FV的推导真心不算难,仔细学习下,一两天内可以看的很明白,不过知其然未必知其所以然,至于FV是这样推导的没错,但为什么这么推导,现在为止我也没有清晰的认识,反正就是先学着吧。 【样本的处理】 FV本质上是用似然函数的梯度向量来表达一幅图像。这个梯度向量的物理意义就是数据拟合中对参数调优的过程。似然函数是哪里来的呢? (似然函数: 一种关于统计模型参数的函数。给定输出x时

机器学习实战——3.决策树

情到浓时终转凉″ 提交于 2019-11-27 00:35:01
决策树常用来处理分类问题,也是最经常使用的数据挖掘算法。它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它是如何工作的。下图所示的流程图就是一个决策树,正方形代表判断模块(decision block),椭圆形代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作分支(branch),它可以到达另一个判断模块或者终止模块。下图构造了一个假想的邮件分类系统,它首先检测发送邮件域名地址,如果地址为myEmployer,则将其放在分类“无聊时需要阅读的邮件”中。如果邮件不是来自这个域名,则检查邮件内容是否包含单词曲棒球,如果包含则将邮件归类到“需要及时处理的朋友邮件”,如果不包含则将邮件归类为“无需阅读的垃圾邮件”。 k-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内在含义,决策树的主要优势就在于数据形式容易理解。 决策树算法能够读取数据集合,它的很多任务都是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终将使用这些机器从数据集中创造的规则。专家系统中经常使用决策树,而且决策树给出结果往往可以匹敌在当前领域具有几十年工作经验的人类专家。 3.1决策树的构建 决策树: 优点:计算复杂度不高,输出结果易于理解

通俗易懂的AI算法原理

我是研究僧i 提交于 2019-11-26 21:46:39
https://www.toutiao.com/a6706348363916247559/ 写给产品经理的机器学习算法入门,在文章中会忽略一些细节以及算法本身具体的实现方式。我想尽量用直白的语言、较少的数学知识给各位产品经理讲清楚各个算法的原理是什么。 机器学习的过程 机器学习的过程从本质上来说就是通过一堆的训练数据找到一个与理想函数(f)相接近的函数。在理想情况下,对于任何适合使用机器学习的问题在理论上是存在一个最优的函数让每个参数都有一个最合适的权重值,但在现实应用中不一定能这么准确得找到这个函数,所以我们要去找与这个理想函数相接近的函数,能够满足我们的使用那么我们就认为是一个好的函数。 这个训练数据的过程通常也被解释为在一堆的假设函数(Hypothesis set)中,它是包含了各种各样的假设,其中包括好的和坏的假设,我们需要做的就是从这一堆假设函数中挑选出它认为最好的假设函数(g),这个假设函数是与理想函数(f)最接近的。 机器学习过程 机器学习这个过程就好比在数学上,我们知道了有一个方程和一些点的坐标,用这些点来求这个方程的未知项从而得到完整的方程是什么。但在机器学习上我们往往很难解出来这个完整的方程是什么,所以我们只能通过各种手段求最接近理想情况下的未知项取值,使得这个结果最接近原本的方程。 什么问题适合用机器学习解决 机器学习不是万能的,并不能解决所有的问题

DNN-HMM语音识别的声学模型

一笑奈何 提交于 2019-11-26 20:14:38
基于DNN-HMM的语音识别声学模型结构如下图所示,与传统的基于GMM-HMM的声学模型相比,唯一不同点在于用DNN替换了GMM来对输入语音信号的观察概率进行建模。DNN与GMM相比具有如下优点: DNN不需要对声学特征所服从的分布进行假设; DNN的输入可以采用连续的拼接帧,因而可以更好地利用上下文的信息; DNN的训练过程可以采用随机优化算法来实现,而不是采用传统的批优化算法,因此当训练数据规模较大时也能进行非常高效的训练,显然,训练数据规模越大,所得到的声学模型就越精确,也就越有利于提高语音识别的性能; 在发音模式分类上,DNN这种区分式模型也要比GMM这种产生式模型更加合适。 DNN的输入是传统的语音波形经过加窗、分帧,然后提取出来的频谱特征,如MFCC、PLP或更底层的滤波器组(filter bank,FBK)声学特征等。FBK特征多利用Mel滤波器组在功率谱上进行滤波并计算对数能量,然后采用其规整值来表示。目前,FBK特征获得了广泛的成功,证明了原始语音频率对于基于DNN的语音识别技术的重要性。与传统的GMM采用单帧特征作为输入不同,DNN将相邻的若干帧进行拼接来得到一个包含更多信息的输入向量。研究表明,采用拼接帧作为输入是DNN相比GMM能获得明显性能提升的关键因素之一。 DNN输出向量的维度对应HMM中状态的个数,通常每一维输出对应一个绑定的triphone状态

[转]机器学习资料(非常好理解)

天大地大妈咪最大 提交于 2019-11-26 16:55:52
先从回归(Regression)问题说起。我在本吧已经看到不少人提到如果想实现强AI,就必须让机器学会观察并总结规律的言论。具体地说,要让机器观察什么是圆的,什么是方的,区分各种颜色和形状,然后根据这些特征对某种事物进行分类或预测。其实这就是回归问题。 如何解决回归问题?我们用眼睛看到某样东西,可以一下子看出它的一些基本特征。可是计算机呢?它看到的只是一堆数字而已,因此要让机器从事物的特征中找到规律,其实是一个如何在数字中找规律的问题。 例:假如有一串数字,已知前六个是1、3、5、7,9,11,请问第七个是几? 你一眼能看出来,是13。对,这串数字之间有明显的数学规律,都是奇数,而且是按顺序排列的。 那么这个呢?前六个是0.14、0.57、1.29、2.29、3.57、5.14,请问第七个是几? 这个就不那么容易看出来了吧!我们把这几个数字在坐标轴上标识一下,可以看到如下图形: 用曲线连接这几个点,延着曲线的走势,可以推算出第七个数字——7。 由此可见,回归问题其实是个曲线拟合(Curve Fitting)问题。那么究竟该如何拟合?机器不可能像你一样,凭感觉随手画一下就拟合了,它必须要通过某种算法才行。 假设有一堆按一定规律分布的样本点,下面我以拟合直线为例,说说这种算法的原理。 其实很简单,先随意画一条直线,然后不断旋转它。每转一下,就分别计算一下每个样本点和直线上对应点的距离

3、深度学习基础

天涯浪子 提交于 2019-11-26 10:50:35
3.1 基本概念 3.1.1 神经网络组成 神经网络类型众多,其中最为重要的是多层感知机。为了详细地描述神经网络,我们先从最简单的神经网络说起。 感知机 多层感知机中的特征神经元模型称为感知机,由Frank Rosenblatt于1957年发明。 简单的感知机如下图所示: 其中$x_1$,$x_2$,$x_3$为感知机的输入,其输出为: $ output = \left{ \begin{aligned} 0, \quad if \ \ \sumi wi xi \leqslant threshold \ 1, \quad if \ \ \sumi wi xi > threshold \end{aligned} \right. $ 假如把感知机想象成一个加权投票机制,比如 3 位评委给一个歌手打分,打分分别为$ 4 $分、$1$ 分、$-3 $分,这$ 3$ 位评分的权重分别是 $1、3、2$,则该歌手最终得分为 $4 \times 1 + 1 \times 3 + (-3) \times 2 = 1$ 。按照比赛规则,选取的 $threshold$ 为 $3$,说明只有歌手的综合评分大于$ 3$ 时,才可顺利晋级。对照感知机,该选手被淘汰,因为: $$ \sumi wi x_i < threshold=3, output = 0 $$ 用 $-b$ 代替 $threshold$