Serverless 实战:用 20 行 Python 代码轻松搞定图像分类和预测
图像分类是人工智能领域的一个热门话题,通俗来讲,就是根据各自在图像信息中反映的不同特征,把不同类别的目标区分开。图像分类利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,代替人的视觉判读。 在实际生活中,我们也会遇到图像分类的应用场景,例如我们常用的通过拍照花朵来识别花朵信息,通过人脸匹对人物信息等。通常,图像识别或分类工具都是在客户端进行数据采集,在服务端进行运算获得结果。因此,一般都会有专门的 API 来实现图像识别,云厂商也会有偿提供类似的能力: 华为云图像标签 腾讯云图像分析 本文将尝试通过一个有趣的 Python 库,快速将图像分类的功能搭建在云函数上,并且和 API 网关结合,对外提供 API 功能,实现一个 Serverless 架构的 " 图像分类 API"。 入门 ImageAI 首先,我们需要一个依赖库: ImageAI 。 什么是 ImageAI 呢?其官方文档是这样描述的: ImageAI 是一个 python 库,旨在使开发人员能够使用简单的几行代码构建具有包含深度学习和计算机视觉功能的应用程序和系统。 ImageAI 本着简洁的原则,支持最先进的机器学习算法,用于图像预测、自定义图像预测、物体检测、视频检测、视频对象跟踪和图像预测训练。ImageAI 目前支持使用在 ImageNet-1000 数据集上训练的 4