ten

pytorch模型可视化,torchviz和tensorboardX方式

淺唱寂寞╮ 提交于 2019-12-05 06:17:52
torchviz方式: 1 from torchviz import make_dot 2 inputs_fake = torch.rand(NUM_SAMPLES, NUM_CHANNELS, HIGTHT, WIDTH).requires_grad_(True) #有).requires_grad_(True)显示输入形状 3 model = vgg() #model是vgg类的实例 4 vis_graph = make_dot(model(inputs_fake), params=dict(list(model.named_parameters()) + [('x', inputs_fake)])) 5 vis_graph.view() tensorboardX方式: from tensorboardX import SummaryWriter inputs_fake = torch.rand(NUM_SAMPLES, NUM_CHANNELS, HIGTHT, WIDTH) with SummaryWriter(comment='vgg') as w: w.add_graph(model, (inputs_fake,)) torchviz生成一个pdf,pdf怎样命名还不知道,或许只能默认命名。 来源: https://www.cnblogs.com/zhangziyan

H3C S10512虚拟化配置

余生颓废 提交于 2019-12-04 12:00:45
软件版本:Version 7.1.070, Release 7585P05 1、配置SW1 #设置SW1的成员编号为1,创建IRF端口2,并将它与物理接口Ten-G0/0/45、Ten-G0/0/46、Ten-G0/0/47、Ten-G0/0/48绑定。 <H3C>system-view System View: return to User View with Ctrl+Z. [H3C]sysname A [A]irf member 1 [A]int range Ten-GigabitEthernet 0/0/45 to Ten-GigabitEthernet 0/0/48 [A-if-range]shutdown [A-if-range]quit [A]irf-port 2 [A-irf-port2]port group interface Ten-GigabitEthernet0/0/45 [A-irf-port2]port group interface Ten-GigabitEthernet0/0/46 [A-irf-port2]port group interface Ten-GigabitEthernet0/0/47 [A-irf-port2]port group interface Ten-GigabitEthernet0/0/48 [A-irf-port2]int

进制转换

半腔热情 提交于 2019-12-04 04:53:22
一. 程序运行截图: (1)二进制转十进制,八进制,十六进制: (2)八进制转二进制,十进制,十六进制: (3)十六进制转十进制,二进制,八进制: (4)十进制转二进制、八进制、十六进制: 二. 函数介绍: (1)二进制转十进制,八进制,十六进制: //2进制转10进制 void two_ten(int a) { int i, s = 0; int result = 0; for (i = 1; a != 0; i *= 2) { if (a % 10 > 1) { s = 1;break; } else { result += (a % 10) * i; a /= 10; } } if (s == 1) printf("Error!\n"); else printf("\n二进制转换十进制为:%d\n", result); } //2进制转8进制 void two_eight(int a) { int i, j, k, s = 0; int p[30]; int result = 0; for (i = 1; a != 0; i *= 2) { if (a % 10 > 1) { s = 1;break; } else { result += (a % 10) * i; a /= 10; } } for (j = 0; result != 0; j++) { p[j] =

进制转换器

穿精又带淫゛_ 提交于 2019-12-04 04:37:29
进制转化器! 一.程序的运行截图 二进制转八进制,判断输入的二进制是否正确 八进制转二进制 八进制转16进制 十六进制转八进制 判断序号输入是否正确,二进制转16进制 二.额外功能 判断输入的数错误后提示输入正确的数,而不是退出程序。 三.运用到的函数 1.用来将16进制数转化为10进制数 long fun(char* s)//16进制转10进制 { int i, t; //t记录临时加的数 long sum = 0; t = 0; for (i = 0;s[i];i++) { if (s[i] >= '0' && s[i] <= '9') t = s[i] - '0'; //当字符是0~9时保持原数不变 if (s[i] >= 'a' && s[i] <= 'z') t = s[i] - 'a' + 10; if (s[i] >= 'A' && s[i] <= 'Z') t = s[i] - 'A' + 10; sum = sum * 16 + t; } return sum; } 2.用于将2,8,10进制转化为10进制 int ten1(int a, int b) // 2,8,10进制转10进制 { int t = 0, product = 1; while (a != 0) { t = t + (a % 10) * product; a = a / 10; product

第二次博客作业

你说的曾经没有我的故事 提交于 2019-12-04 04:19:57
一、运行截图 十进制转二进制 十进制转八进制 二进制转十进制 八进制转十进制 二、代码介绍 十转二 void ten_two() { printf("请输入一个十进制数:\n"); int n, a[100], item, m; scanf("%d", &n); item = 0; int i = 0; m = n; while (n > 0) { a[i] = n % 2; n = n / 2; i++; } int j; printf("%d的二进制数为:\n", m); for (j = i - 1; j >= 0; j--) printf("%d", a[j]); } 十转八 void ten_eight() { printf("请输入一个十进制数:\n"); int n, a[100], item, m; scanf("%d", &n); item = 0; int i = 0; m = n; while (n > 0) { a[i] = n % 8; n = n / 8; i++; } int j; printf("%d的八进制数为:\n", m); printf("0"); for (j = i - 1; j >= 0; j--) printf("%d", a[j]); } 二转十 void two_ten() { printf("请输入一个二进制数:\n");

第二次博客作业: 函数+进制转换器v1.0beta

偶尔善良 提交于 2019-12-04 04:10:09
一、运行截图 (备注:二进制转换为八进制或者十六进制可以通过(4)(2)或者(4)(3)先把二进制转换成十进制在转换成八进制或者十六进制来实现,八进制和十六进制转换成其他进制也是如此。) 二、函数及功能 (1)ten_two函数(将十进制转换成二进制的函数) void ten_two() { printf("请输入一个十进制数:\n"); int n, a[100], item, m; scanf("%d", &n); item = 0; int i = 0; m = n; while (n > 0) { a[i] = n % 2; n = n / 2; i++; } int j; printf("%d的二进制数为:\n", m); for (j = i - 1; j >= 0; j--) printf("%d", a[j]); } (2)ten_eight函数(将十进制转换成八进制的函数) void ten_eight() { printf("请输入一个十进制数:\n"); int n, a[100], item, m; scanf("%d", &n); item = 0; int i = 0; m = n; while (n > 0) { a[i] = n % 8; n = n / 8; i++; } int j; printf("%d的八进制数为:\n", m);

Mongoose find last ten entries in database

匿名 (未验证) 提交于 2019-12-03 08:48:34
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am making a simple little Social Network. I have all the inputting posts, users, etc, done. The only thing wrong right now is it is pretty much just a chat room. Whenever you post something on someone's page, the only people that can view it are the people on the page at the time. When you refresh, all the posts are gone. Here is the technical part of what I am doing when posts are sent, and what I want to do. Whenever you post a post, it does somethings that are not important, I will not list them. But there is one part that is important,

TF slice_input_producer not keeping tensors in sync

匿名 (未验证) 提交于 2019-12-03 02:03:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I'm reading images into my TF network, but I also need the associated labels along with them. So I tried to follow this answer , but the labels that are output don't actually match the images that I'm getting in every batch. The names of my images are in the format dir/3.jpg , so I just extract the label from the image file name. truth_filenames_np = ... truth_filenames_tf = tf.convert_to_tensor(truth_filenames_np) # get the labels labels = [f.rsplit("/", 1)[1] for f in truth_filenames_np] labels_tf = tf.convert_to_tensor(labels) # *** This

Keras + TensorFlow: “module &#039;tensorflow&#039; has no attribute &#039;merge_all_summaries&#039;&#039;”

匿名 (未验证) 提交于 2019-12-03 01:20:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: Very similar to Keras + tensorflow gives the error "no attribute 'control_flow_ops'" , from the Convolutional autoencoder example from https://blog.keras.io/building-autoencoders-in-keras.html I get the error [...]lib/python3.5/site-packages/keras/callbacks.py in _set_model(self, model) 478 tf.histogram_summary('{}_out'.format(layer), 479 layer.output) --> 480 self.merged = tf.merge_all_summaries() 481 if self.write_graph: 482 if parse_version(tf.__version__) >= parse_version('0.8.0'): AttributeError: module 'tensorflow' has no attribute

Extract Image Segmentation Map from Tensorflow DeepLab v3 Demo

匿名 (未验证) 提交于 2019-12-03 01:18:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I have set up the Google's DeepLab V3 Demo on my local system and it runs successfully after making some minor changes. It's as: # -*- coding: utf-8 -*- # DeepLab Demo This demo will demostrate the steps to run deeplab semantic segmentation model on sample input images. """ import os from io import BytesIO import tarfile import tempfile from six.moves import urllib from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np from PIL import Image import tensorflow as tf class DeepLabModel(object): """Class to load