slim

Why would moving_mean and moving _variance in Tensorflow BN layer become nan when I set is_training=False in training time?

随声附和 提交于 2020-07-10 06:33:26
问题 In the training time, I want to keep BN layer unchange, so I pass is_training=False to: tf.contrib.layers.batch_norm(tensor_go_next, decay=0.9, center=True, scale=True, epsilon=1e-9, updates_collections=tf.GraphKeys.UPDATE_OPS, is_training=False, scope=name_bn_scope) and didn't put name_bn_scope/gamma:0 name_bn_scope/beta:0 to train var_list. After training, gamma and beta are still the same, which is what I want exactly. But the moving_mean and moving _variance would become nan matrix after

Why would moving_mean and moving _variance in Tensorflow BN layer become nan when I set is_training=False in training time?

…衆ロ難τιáo~ 提交于 2020-07-10 06:32:37
问题 In the training time, I want to keep BN layer unchange, so I pass is_training=False to: tf.contrib.layers.batch_norm(tensor_go_next, decay=0.9, center=True, scale=True, epsilon=1e-9, updates_collections=tf.GraphKeys.UPDATE_OPS, is_training=False, scope=name_bn_scope) and didn't put name_bn_scope/gamma:0 name_bn_scope/beta:0 to train var_list. After training, gamma and beta are still the same, which is what I want exactly. But the moving_mean and moving _variance would become nan matrix after

RGB-D显著性突出物体(学习)

眉间皱痕 提交于 2020-05-06 12:44:55
论文阅读:Adaptive Fusion for RGB-D Salient Object Detection 这篇代码的创新点在于使用了SW层,使用SW_logits * img_logits + (1 - SW_logits) * (1 - depth_logits) 来获得最终的预测结果 另外一个关键点是使用了3种loss损失值 第一种损失值,即经过归一化的标签g_t 与 输出的结果logits的sigmoid的损失值 第二种损失值, 即将im_logits进行sigmoid转换为0, 1之间,然后使用sigmoid_im * label + (1 - sigmoid_im) * (1 - label) # 获得标签值与图片值的交叉熵损失值 将计算好的交叉熵损失函数与SW_map 计算-log的交叉熵损失函数,个人认为这个loss存在问题 第三种损失值,即edge_loss即边界的损失值 将预测的结果进行sigmoid操作,转换为(0, 1) 使用tf.reshape(tf.constant([-1, 0, 1], tf.float32), [1, 3, 1, 1]) 构造x方向的边界卷积 使用tf.reshape(x_weight, [3, 1, 1, 1]) # 构造y方向的边界卷积 使用tf.nn.conv2d(g_t, x_weight, [1, 1, 1, 1],

解决python在命令行中运行时导入包失败,出现错误信息 "ModuleNotFoundError: No module named ***"

ⅰ亾dé卋堺 提交于 2020-05-05 15:56:54
转自 https://www.cnblogs.com/dreamyu/p/7889959.html https://www.cnblogs.com/lifeofershisui/p/8135702.html 大家可能知道我们的工程在IDE(Pycharm)中运行和我们在cmd中运行的路径是不一样的,在pycharm中运行时, 会默认pycharm的目录+我们的工程所在目录为运行目录,而在cmd中运行时,会以我们的工程目录所在目录来运行 而在import包时,会首先从pythonPATH的环境变量中来查看包,如果没有你的PYTHONPATH中所包含的目录没有 工程目录的根目录,那么你在导入不是同一个目录下的其他工程中的包时会出现import错误 解决方法:在你运行的文件中将你的工程目录加入到PYTHONPATH中,具体方法如下: import os,sys sys.path.append("path") //path为你的工程根目录的绝对路径 如果此时你运行时依然报错,请先检查是否将根目录加入到了PYTHONPATH中,方法为: import os PATH = os.environ for key in PATH:   print(key,PATH[key]) 其他设置PYTHONPATH方法: PYTHONPATH是Python搜索路径

English trip V1

自闭症网瘾萝莉.ら 提交于 2020-05-05 13:07:54
In this lesson you will learn to describe a person. 课上内容(Lesson) appearance -> ap pea ran ce 外貌 How to describe a person? < character -> ch a rac ter ['k æ rɪktɚ] 性格 appearance: face: 方脸 square face 圆脸 round face 瓜子脸 oval face body: short 矮的 medium 中等 tall 高的 fat (肥)or over weight(过重,肥胖) # 使用fat不是特别的 polite(礼貌) thin 瘦的 slim 苗条的 hair: wavy hair 卷发;波浪发 curly hair 卷发,卷发型;自然卷发 straight hair 直发 short hair 短发 相关 Adjective -> A d jec ti ve # d 没有发音 Nice 和蔼的 Beautiful 美丽的 lovely 可爱的 handsome (男子)英俊的;可观的;大方的,慷慨的;健美而端庄的 # han d some 这里的 d 没有发音 friendly .友好的;亲切的;支持的;融洽的,和睦的 sunshiny 晴朗的;阳光照耀的;向阳极好的

【转载】 Tensorflow如何直接使用预训练模型(vgg16为例)

北战南征 提交于 2020-04-24 14:18:04
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https://blog.csdn.net/weixin_44633882/article/details/89054159 ------------------------------------------------------------------------------------------ 主流的CNN模型基本都会使用VGG16或者ResNet等网络作为预训练模型,正好有个朋友和我说发给他一个VGG16的预训练模型和代码,我就整理了一下。在这里也分享一下,方便大家直接使用。 系统环境 Tensorflow-gpu 1.12.0 Python 3.5.2 资料来源 官方slim说明 https://github.com/tensorflow/models/tree/1af55e018eebce03fb61bba9959a04672536107d/research/slim 主页里直接可以看到所提供的模型列表和下载链接。 我们选择vgg16来做个示范哈,虽然vgg16的准确率现在已经不算高。 拿到 vgg_16.ckpt 模型文件! 直接贴上代码 vgg16预训练模型使用代码 import os import numpy as np import

Slim 3 Middleware Redirect

笑着哭i 提交于 2020-04-10 08:20:53
问题 I want to check if a user is logged in. Therefor I have an Class witch returns true or false. Now I want a middleware which checks if the user is logged in. $app->get('/login', '\Controller\AccountController:loginGet')->add(Auth::class)->setName('login'); $app->post('/login', '\Controller\AccountController:loginPost')->add(Auth::class); Auth Class class Auth { protected $ci; private $account; //Constructor public function __construct(ContainerInterface $ci) { $this->ci = $ci; $this->account =

how to add twig-view in slimframework v4

荒凉一梦 提交于 2020-03-16 06:34:26
问题 I'm trying to add twig-view in slim v4 In slim v3, we add twig-view in container $container['view'] = function ($c) { $view = new \Slim\Views\Twig('path/to/templates', [ 'cache' => 'path/to/cache' ]); // Instantiate and add Slim specific extension $router = $c->get('router'); $uri = \Slim\Http\Uri::createFromEnvironment(new \Slim\Http\Environment($_SERVER)); $view->addExtension(new \Slim\Views\TwigExtension($router, $uri)); return $view; }; but I can't add twig like that in slim v4 回答1:

Klokki for mac(任务管理) v1.1.3特别版

断了今生、忘了曾经 提交于 2020-02-25 15:47:21
Klokki for mac激活版 ​是Mac平台上的一款任务管理应用。Klokki Slim Mac版直接从菜单栏提供了一种强大而漂亮的时间跟踪方法。专注于你的工作,享受一种高效的方式来跟踪你在项目上的时间。 Klokki for mac破解版下载 https://www.macdown.com/mac/4293.html Klokki for mac安装教程 下载完成后,双击.pkg文件打开,根据安装器提示进行安装即可。 Klokki for Mac软件介绍 精确的时间跟踪,没有任何麻烦 使用Klokki自动执行计时,无需启动或暂停计时器。享受最有效的工作方式。 来源: oschina 链接: https://my.oschina.net/u/4431537/blog/3167694

Modify routes and url when using Varnish

早过忘川 提交于 2020-02-05 04:06:26
问题 I have a project where Varnish is used in front of a Slim 4 project. Due to some project specialities, the original url should be hidden and the incoming request is rewritten to some other headers. Example Original call to demo.xyz is coming to Varnish Varnish is transforming the request to http://slimapp.dev/url/demo.xyz The original host is saved in the header with X-Orig-Host: demo.xyz The Slim App needs to detect if it is a Varnish request (I already got that) and needs to transform the