初等函数求导
remoon 求C的导数 \[f(x) = C\] \[\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\] \[=\lim_{h \to 0} \frac{C-C}{h}\] \[=\lim_{h \to 0} \frac{0}{h}\] \[=0\] 幂函数导数 \[f(x) = x^n(n \in R)\] \[\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\] \[=\lim_{h \to 0} \frac{(x+h)^n - x^n}{h}\] \[=\lim_{h \to 0} x^{n-1} \frac{(1+\frac{h}{x})^n - 1}{\frac{h}{x}}\] \[=\lim_{h \to 0} x^{n-1} \frac{n\frac{h}{x}}{\frac{h}{x}}\] \[=\lim_{h \to 0} nx^{n-1}\] \[=nx^{n-1}\] 正弦函数导数 \[f(x) = \sin x\] \[\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\] \[=\lim_{h \to 0} \frac{sin(x+h) - sin(x)}{h}\] \[=\lim_{h \to 0} \frac{2cos(x+\frac{h}{2})sin(\frac